Finite-difference Methods for Second-order Wave Equations with Reduced Dispersion Errors PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Finite-difference Methods for Second-order Wave Equations with Reduced Dispersion Errors PDF full book. Access full book title Finite-difference Methods for Second-order Wave Equations with Reduced Dispersion Errors by Yajun An. Download full books in PDF and EPUB format.

Finite-difference Methods for Second-order Wave Equations with Reduced Dispersion Errors

Finite-difference Methods for Second-order Wave Equations with Reduced Dispersion Errors PDF Author: Yajun An
Publisher:
ISBN:
Category :
Languages : en
Pages : 96

Book Description
Finite Difference (FD) schemes have been used widely in computing approximations for partial differential equations for wave propagation, as they are simple, flexible and robust. However, even for stable and accurate schemes, waves in the numerical schemes can propa- gate at different wave speeds than in the true medium. This phenomenon is called numerical dispersion error. Traditionally, FD schemes are designed by forcing accuracy conditions, and in spite of the advantages mentioned above, such schemes suffer from numerical dispersion errors. Traditionally, two ways have been used for the purpose of reducing dispersion error: increasing the sampling rate and using higher order accuracy. More recently, Finkelstein and Kastner (2007, 2008) propose a unified methodology for deriving new schemes that can accommodate arbitrary requirements for reduced phase or group velocity dispersion errors, defined over any region in the frequency domain. Such schemes are based on enforcing exact phase or group velocity at certain preset wavenumbers. This method has been shown to reduce dispersion errors at large wavenumbers. In this dissertation, we study the construction and behaviors of FD schemes designed to have reduced numerical dispersion error. We prove that the system of equations to select the coefficients in a centered FD scheme for second order wave equations with specified order of accuracy and exact phase velocity at preset wavenumbers can always be solved. Furthermore, from the existence of such schemes, we can show that schemes which reduce the dispersion error uniformly in an interval of the frequency domain can be constructed from a Remez algorithm. In these new schemes we propose, we can also specify wavenumbers where the exact phase or group dispersion relation can be satisfied. For an incoming signal consisting of waves of different wavenumbers, our schemes can give more accurate wave propagation speeds. Furthermore, when we apply our schemes in two dimensional media, we can obtain schemes that give small dispersion error at all propagation angles.

Finite-difference Methods for Second-order Wave Equations with Reduced Dispersion Errors

Finite-difference Methods for Second-order Wave Equations with Reduced Dispersion Errors PDF Author: Yajun An
Publisher:
ISBN:
Category :
Languages : en
Pages : 96

Book Description
Finite Difference (FD) schemes have been used widely in computing approximations for partial differential equations for wave propagation, as they are simple, flexible and robust. However, even for stable and accurate schemes, waves in the numerical schemes can propa- gate at different wave speeds than in the true medium. This phenomenon is called numerical dispersion error. Traditionally, FD schemes are designed by forcing accuracy conditions, and in spite of the advantages mentioned above, such schemes suffer from numerical dispersion errors. Traditionally, two ways have been used for the purpose of reducing dispersion error: increasing the sampling rate and using higher order accuracy. More recently, Finkelstein and Kastner (2007, 2008) propose a unified methodology for deriving new schemes that can accommodate arbitrary requirements for reduced phase or group velocity dispersion errors, defined over any region in the frequency domain. Such schemes are based on enforcing exact phase or group velocity at certain preset wavenumbers. This method has been shown to reduce dispersion errors at large wavenumbers. In this dissertation, we study the construction and behaviors of FD schemes designed to have reduced numerical dispersion error. We prove that the system of equations to select the coefficients in a centered FD scheme for second order wave equations with specified order of accuracy and exact phase velocity at preset wavenumbers can always be solved. Furthermore, from the existence of such schemes, we can show that schemes which reduce the dispersion error uniformly in an interval of the frequency domain can be constructed from a Remez algorithm. In these new schemes we propose, we can also specify wavenumbers where the exact phase or group dispersion relation can be satisfied. For an incoming signal consisting of waves of different wavenumbers, our schemes can give more accurate wave propagation speeds. Furthermore, when we apply our schemes in two dimensional media, we can obtain schemes that give small dispersion error at all propagation angles.

Finite-difference Methods for the Wave Equation with Reduced Dispersion Errors

Finite-difference Methods for the Wave Equation with Reduced Dispersion Errors PDF Author: Yajun An
Publisher:
ISBN:
Category : Finite differences
Languages : en
Pages :

Book Description
A new methodology was proposed in Finkelstein and Kastner (2007,2008) to derive finite-difference (FD) schemes in the joint time-space domain to reduce dispersion error. The key idea is that the true dispersion relation is satisfied exactly at some specified wavenumbers. Liu and Sen (2009) further developed their idea, going to 2D and 3D. In our work, we will prove that the system for coefficients of these new schemes is solvable for any normalized wavenumbers up to the Nyquist. We will also look at the system matrix and prove that we can get higher order approximation to the dispersion at arbitrary normalized wavenumbers up to the Nyquist.

Higher-Order Numerical Methods for Transient Wave Equations

Higher-Order Numerical Methods for Transient Wave Equations PDF Author: Gary Cohen
Publisher: Springer Science & Business Media
ISBN: 366204823X
Category : Science
Languages : en
Pages : 355

Book Description
"To my knowledge [this] is the first book to address specifically the use of high-order discretizations in the time domain to solve wave equations. [...] I recommend the book for its clear and cogent coverage of the material selected by its author." --Physics Today, March 2003

Finite Difference Methods for Ordinary and Partial Differential Equations

Finite Difference Methods for Ordinary and Partial Differential Equations PDF Author: Randall J. LeVeque
Publisher: SIAM
ISBN: 9780898717839
Category : Mathematics
Languages : en
Pages : 356

Book Description
This book introduces finite difference methods for both ordinary differential equations (ODEs) and partial differential equations (PDEs) and discusses the similarities and differences between algorithm design and stability analysis for different types of equations. A unified view of stability theory for ODEs and PDEs is presented, and the interplay between ODE and PDE analysis is stressed. The text emphasizes standard classical methods, but several newer approaches also are introduced and are described in the context of simple motivating examples.

Finite Difference Computing with PDEs

Finite Difference Computing with PDEs PDF Author: Hans Petter Langtangen
Publisher: Springer
ISBN: 3319554565
Category : Computers
Languages : en
Pages : 522

Book Description
This book is open access under a CC BY 4.0 license. This easy-to-read book introduces the basics of solving partial differential equations by means of finite difference methods. Unlike many of the traditional academic works on the topic, this book was written for practitioners. Accordingly, it especially addresses: the construction of finite difference schemes, formulation and implementation of algorithms, verification of implementations, analyses of physical behavior as implied by the numerical solutions, and how to apply the methods and software to solve problems in the fields of physics and biology.

Numerical Methods for Wave Equations in Geophysical Fluid Dynamics

Numerical Methods for Wave Equations in Geophysical Fluid Dynamics PDF Author: Dale R. Durran
Publisher: Springer Science & Business Media
ISBN: 1475730810
Category : Mathematics
Languages : en
Pages : 476

Book Description
Covering a wide range of techniques, this book describes methods for the solution of partial differential equations which govern wave propagation and are used in modeling atmospheric and oceanic flows. The presentation establishes a concrete link between theory and practice.

Nonstandard Finite Difference Schemes: Methodology And Applications

Nonstandard Finite Difference Schemes: Methodology And Applications PDF Author: Ronald E Mickens
Publisher: World Scientific
ISBN: 981122255X
Category : Mathematics
Languages : en
Pages : 332

Book Description
This second edition of Nonstandard Finite Difference Models of Differential Equations provides an update on the progress made in both the theory and application of the NSFD methodology during the past two and a half decades. In addition to discussing details related to the determination of the denominator functions and the nonlocal discrete representations of functions of dependent variables, we include many examples illustrating just how this should be done.Of real value to the reader is the inclusion of a chapter listing many exact difference schemes, and a chapter giving NSFD schemes from the research literature. The book emphasizes the critical roles played by the 'principle of dynamic consistency' and the use of sub-equations for the construction of valid NSFD discretizations of differential equations.

Finite Element and Discontinuous Galerkin Methods for Transient Wave Equations

Finite Element and Discontinuous Galerkin Methods for Transient Wave Equations PDF Author: Gary Cohen
Publisher: Springer
ISBN: 9401777616
Category : Technology & Engineering
Languages : en
Pages : 393

Book Description
This monograph presents numerical methods for solving transient wave equations (i.e. in time domain). More precisely, it provides an overview of continuous and discontinuous finite element methods for these equations, including their implementation in physical models, an extensive description of 2D and 3D elements with different shapes, such as prisms or pyramids, an analysis of the accuracy of the methods and the study of the Maxwell’s system and the important problem of its spurious free approximations. After recalling the classical models, i.e. acoustics, linear elastodynamics and electromagnetism and their variational formulations, the authors present a wide variety of finite elements of different shapes useful for the numerical resolution of wave equations. Then, they focus on the construction of efficient continuous and discontinuous Galerkin methods and study their accuracy by plane wave techniques and a priori error estimates. A chapter is devoted to the Maxwell’s system and the important problem of its spurious-free approximations. Treatment of unbounded domains by Absorbing Boundary Conditions (ABC) and Perfectly Matched Layers (PML) is described and analyzed in a separate chapter. The two last chapters deal with time approximation including local time-stepping and with the study of some complex models, i.e. acoustics in flow, gravity waves and vibrating thin plates. Throughout, emphasis is put on the accuracy and computational efficiency of the methods, with attention brought to their practical aspects.This monograph also covers in details the theoretical foundations and numerical analysis of these methods. As a result, this monograph will be of interest to practitioners, researchers, engineers and graduate students involved in the numerical simulationof waves.

Analytical and Numerical Methods for Wave Propagation in Fluid Media

Analytical and Numerical Methods for Wave Propagation in Fluid Media PDF Author: K. Murawski
Publisher: World Scientific
ISBN: 9789812776631
Category : Science
Languages : en
Pages : 260

Book Description
This book surveys analytical and numerical techniques appropriate to the description of fluid motion with an emphasis on the most widely used techniques exhibiting the best performance.Analytical and numerical solutions to hyperbolic systems of wave equations are the primary focus of the book. In addition, many interesting wave phenomena in fluids are considered using examples such as acoustic waves, the emission of air pollutants, magnetohydrodynamic waves in the solar corona, solar wind interaction with the planet venus, and ion-acoustic solitons.

Numerical Solution of Partial Differential Equations

Numerical Solution of Partial Differential Equations PDF Author: Gordon D. Smith
Publisher: Oxford University Press
ISBN: 9780198596509
Category : Computers
Languages : en
Pages : 356

Book Description
Substantially revised, this authoritative study covers the standard finite difference methods of parabolic, hyperbolic, and elliptic equations, and includes the concomitant theoretical work on consistency, stability, and convergence. The new edition includes revised and greatly expanded sections on stability based on the Lax-Richtmeyer definition, the application of Pade approximants to systems of ordinary differential equations for parabolic and hyperbolic equations, and a considerably improved presentation of iterative methods. A fast-paced introduction to numerical methods, this will be a useful volume for students of mathematics and engineering, and for postgraduates and professionals who need a clear, concise grounding in this discipline.