Film Boiling on Spheres in Single- and Two-phase Flows. Final Report PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Film Boiling on Spheres in Single- and Two-phase Flows. Final Report PDF full book. Access full book title Film Boiling on Spheres in Single- and Two-phase Flows. Final Report by . Download full books in PDF and EPUB format.

Film Boiling on Spheres in Single- and Two-phase Flows. Final Report

Film Boiling on Spheres in Single- and Two-phase Flows. Final Report PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 259

Book Description
Film boiling on spheres in single- and two-phase flows was studied experimentally and theoretically with an emphasis on establishing the film boiling heat transfer closure law, which is useful in the analysis of nuclear reactor core melt accidents. Systematic experimentation of film boiling on spheres in single-phase water flows was carried out to investigate the effects of liquid subcooling (from 0 to 40°C), liquid velocity (from 0 to 2 m/s), sphere superheat (from 200 to 900°C), sphere diameter (from 6 to 19 mm), and sphere material (stainless steel and brass) on film boiling heat transfer. Based on the experimental data a general film boiling heat transfer correlation is developed. Utilizing a two-phase laminar boundary-layer model for the unseparated front film region and a turbulent eddy model for the separated rear region, a theoretical model was developed to predict the film boiling heat transfer in all single-phase regimes. The film boiling from a sphere in two-phase flows was investigated both in upward two-phase flows (with void fraction from 0.2 to 0.65, water velocity from 0.6 to 3.2 m/s, and steam velocity from 3.0 to 9.0 m/s) and in downward two-phase flows (with void fraction from 0.7 to 0.95, water velocity from 1.9 to 6.5 m/s, and steam velocity from 1.1 to 9.0 m/s). The saturated single-phase heat transfer correlation was found to be applicable to the two-phase film boiling data by making use of the actual water velocity (water phase velocity), and an adjustment factor of (1-[alpha])14 (with [alpha] being the void fraction) for downward flow case only. Slight adjustments of the Reynolds number exponents in the correlation provided an even better interpretation of the two-phase data. Preliminary experiments were also conducted to address the influences of multisphere structure on the film boiling heat transfer in single- and two-phase flows.

Film Boiling on Spheres in Single- and Two-phase Flows. Final Report

Film Boiling on Spheres in Single- and Two-phase Flows. Final Report PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 259

Book Description
Film boiling on spheres in single- and two-phase flows was studied experimentally and theoretically with an emphasis on establishing the film boiling heat transfer closure law, which is useful in the analysis of nuclear reactor core melt accidents. Systematic experimentation of film boiling on spheres in single-phase water flows was carried out to investigate the effects of liquid subcooling (from 0 to 40°C), liquid velocity (from 0 to 2 m/s), sphere superheat (from 200 to 900°C), sphere diameter (from 6 to 19 mm), and sphere material (stainless steel and brass) on film boiling heat transfer. Based on the experimental data a general film boiling heat transfer correlation is developed. Utilizing a two-phase laminar boundary-layer model for the unseparated front film region and a turbulent eddy model for the separated rear region, a theoretical model was developed to predict the film boiling heat transfer in all single-phase regimes. The film boiling from a sphere in two-phase flows was investigated both in upward two-phase flows (with void fraction from 0.2 to 0.65, water velocity from 0.6 to 3.2 m/s, and steam velocity from 3.0 to 9.0 m/s) and in downward two-phase flows (with void fraction from 0.7 to 0.95, water velocity from 1.9 to 6.5 m/s, and steam velocity from 1.1 to 9.0 m/s). The saturated single-phase heat transfer correlation was found to be applicable to the two-phase film boiling data by making use of the actual water velocity (water phase velocity), and an adjustment factor of (1-[alpha])14 (with [alpha] being the void fraction) for downward flow case only. Slight adjustments of the Reynolds number exponents in the correlation provided an even better interpretation of the two-phase data. Preliminary experiments were also conducted to address the influences of multisphere structure on the film boiling heat transfer in single- and two-phase flows.

Film Boiling on Spheres in Single- and Two-phase Flows

Film Boiling on Spheres in Single- and Two-phase Flows PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description
Film boiling on spheres in single- and two-phase flows was studied experimentally and theoretically with an emphasis on establishing the film boiling heat transfer closure law, which is useful in the analysis of nuclear reactor core melt accidents. Systematic experimentation of film boiling on spheres in single-phase water flows was carried out to investigate the effects of liquid subcooling (from 0 to 40 C), liquid velocity (from 0 to 2 m/s), sphere superheat (from 200 to 900 C), sphere diameter (from 6 to 19 mm), and sphere material (stainless steel and brass) on film boiling heat transfer. Based on the experimental data a general film boiling heat transfer correlation is developed. Utilizing a two-phase laminar boundary-layer model for the unseparated front film region and a turbulent eddy model for the separated rear region, a theoretical model was developed to predict the film boiling heat transfer in all single-phase regimes. The film boiling from a sphere in two-phase flows was investigated both in upward two-phase flows (with void fraction from 0.2 to 0.65, water velocity from 0.6 to 3.2 m/s, and steam velocity from 3.0 to 9.0 m/s) and in downward two-phase flows (with void fraction from 0.7 to 0.95, water velocity from 1.9 to 6.5 m/s, and steam velocity from 1.1 to 9.0 m/s). The saturated single-phase heat transfer correlation was found to be applicable to the two-phase film boiling data by making use of the actual water velocity (water phase velocity), and an adjustment factor of (1 -[alpha])[sup 1/4] (with a being the void fraction) for downward flow case only. Slight adjustments of the Reynolds number exponents in the correlation provided an even better interpretation of the two-phase data. Preliminary experiments were also conducted to address the influences of multi-sphere structure on the film boiling heat transfer in single- and two-phase flows.

Film Boiling from Spheres in Single- and Two-phase Flow

Film Boiling from Spheres in Single- and Two-phase Flow PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 8

Book Description
Experimental data on film boiling heat transfer from single, inductively heated, spheres in single- and two-phase flow (saturated water and steam, respectively) are presented. In the single-phase-flow experiments water velocities ranged from 0.1 to 2.0 m/s; in the two-phase-flow experiments superficial water and steam velocities covered 0.1 to 0.6 m/s and 4 to 10 m/s, respectively. All experiments were run at atmospheric pressure and with sphere temperatures from 900C down to quenching. Limited interpretations of the single-phase- flow data are possible, but the two-phase-flow data are new and unique.

Film Boiling on Spheres in Single- and Two-phase Flows

Film Boiling on Spheres in Single- and Two-phase Flows PDF Author: Changchun Liu
Publisher:
ISBN:
Category :
Languages : en
Pages : 14

Book Description


Two-Phase Heat Transfer

Two-Phase Heat Transfer PDF Author: Mirza Mohammed Shah
Publisher: John Wiley & Sons
ISBN: 1119618673
Category : Science
Languages : en
Pages : 388

Book Description
A guide to two-phase heat transfer theory, practice, and applications Designed primarily as a practical resource for design and development engineers, Two-Phase Heat Transfer contains the theories and methods of two-phase heat transfer that are solution oriented. Written in a clear and concise manner, the book includes information on physical phenomena, experimental data, theoretical solutions, and empirical correlations. A very wide range of real-world applications and formulas/correlations for them are presented. The two-phase heat transfer systems covered in the book include boiling, condensation, gas-liquid mixtures, and gas-solid mixtures. The authora noted expert in this fieldalso reviews the numerous applications of two-phase heat transfer such as heat exchangers in refrigeration and air conditioning, conventional and nuclear power generation, solar power plants, aeronautics, chemical processes, petroleum industry, and more. Special attention is given to heat exchangers using mini-channels which are being increasingly used in a variety of applications. This important book: Offers a practical guide to two-phase heat transfer Includes clear guidance for design professionals by identifying the best available predictive techniques Reviews the extensive literature on heat transfer in two-phase systems Presents information to aid in the design and analysis of heat exchangers. Written for students and research, design, and development engineers, Two-Phase Heat Transfer is a comprehensive volume that covers the theory, methods, and applications of two-phase heat transfer.

Multiphase Flow Dynamics 2

Multiphase Flow Dynamics 2 PDF Author: Nikolay Ivanov Kolev
Publisher: Springer Science & Business Media
ISBN: 3540268308
Category : Technology & Engineering
Languages : en
Pages : 702

Book Description
Multi-phase flows are part of our natural environment such as tornadoes, typhoons, air and water pollution and volcanic activities as well as part of industrial technology such as power plants, combustion engines, propulsion systems, or chemical and biological industry. The industrial use of multi-phase systems requires analytical and numerical strategies for predicting their behavior. In its third extended edition this book contains theory, methods and practical experience for describing complex transient multi-phase processes in arbitrary geometrical configurations. This book provides a systematic presentation of the theory and practice of numerical multi-phase fluid dynamics. In the present second volume the mechanical and thermal interactions in multiphase dynamics are provided. This third edition includes various updates, extensions, improvements and corrections.

Multiphase Flow Dynamics 3

Multiphase Flow Dynamics 3 PDF Author: Nikolay Ivanov Kolev
Publisher: Springer Science & Business Media
ISBN: 3642213723
Category : Technology & Engineering
Languages : en
Pages : 683

Book Description
Multi-phase flows are part of our natural environment such as tornadoes, typhoons, air and water pollution and volcanic activities as well as part of industrial technology such as power plants, combustion engines, propulsion systems, or chemical and biological industry. The industrial use of multi-phase systems requires analytical and numerical strategies for predicting their behavior. .In its fourth extended edition the successful monograph package “Multiphase Flow Daynmics” contains theory, methods and practical experience for describing complex transient multi-phase processes in arbitrary geometrical configurations, providing a systematic presentation of the theory and practice of numerical multi-phase fluid dynamics. In the present third volume methods for describing of the thermal interactions in multiphase dynamics are provided. In addition a large number of valuable experiments is collected and predicted using the methods introduced in this monograph. In this way the accuracy of the methods is revealed to the reader. This fourth edition includes various updates, extensions, improvements and corrections. "The literature in the field of multiphase flows is numerous. Therefore, it is very important to have a comprehensive and systematic overview including useful numerical methods. The volumes have the character of a handbook and accomplish this function excellently. The models are described in detail and a great number of comprehensive examples and some cases useful for testing numerical solutions are included. These two volumes are very useful for scientists and practicing engineers in the fields of technical thermodynamics, chemical engineering, fluid mechanics, and for mathematicians with interest in technical problems. Besides, they can give a good overview of the dynamically developing, complex field of knowledge to students. This monograph is highly recommended,” BERND PLATZER, ZAAM In the present third volume methods for describing of the thermal interactions in multiphase dynamics are provided. In addition a large number of valuable experiments is collected and predicted using the methods introduced in this monograph. In this way the accuracy of the methods is revealed to the reader. This fourth edition includes various updates, extensions, improvements and corrections. "The literature in the field of multiphase flows is numerous. Therefore, it is very important to have a comprehensive and systematic overview including useful numerical methods. The volumes have the character of a handbook and accomplish this function excellently. The models are described in detail and a great number of comprehensive examples and some cases useful for testing numerical solutions are included. These two volumes are very useful for scientists and practicing engineers in the fields of technical thermodynamics, chemical engineering, fluid mechanics, and for mathematicians with interest in technical problems. Besides, they can give a good overview of the dynamically developing, complex field of knowledge to students. This monograph is highly recommended,” BERND PLATZER, ZAAM

Film Boiling from Submerged Spheres

Film Boiling from Submerged Spheres PDF Author: Robert C. Hendricks
Publisher:
ISBN:
Category : Film boiling
Languages : en
Pages : 72

Book Description


Handbook of Phase Change

Handbook of Phase Change PDF Author: S.G. Kandlikar
Publisher: Routledge
ISBN: 1351442198
Category : Science
Languages : en
Pages : 786

Book Description
Provides a comprehensive coverage of the basic phenomena. It contains twenty-five chapters which cover different aspects of boiling and condensation. First the specific topic or phenomenon is described, followed by a brief survey of previous work, a phenomenological model based on current understanding, and finally a set of recommended design equa

Proceedings

Proceedings PDF Author: Gad Hetsroni
Publisher: Pergamon
ISBN: 9780080170350
Category : Heat
Languages : en
Pages : 766

Book Description