Field Computation for Accelerator Magnets PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Field Computation for Accelerator Magnets PDF full book. Access full book title Field Computation for Accelerator Magnets by Stephan Russenschuck. Download full books in PDF and EPUB format.

Field Computation for Accelerator Magnets

Field Computation for Accelerator Magnets PDF Author: Stephan Russenschuck
Publisher: John Wiley & Sons
ISBN: 3527635475
Category : Science
Languages : en
Pages : 778

Book Description
Written by a leading expert on the electromagnetic design and engineering of superconducting accelerator magnets, this book offers the most comprehensive treatment of the subject to date. In concise and easy-to-read style, the author lays out both the mathematical basis for analytical and numerical field computation and their application to magnet design and manufacture. Of special interest is the presentation of a software-based design process that has been applied to the entire production cycle of accelerator magnets from the concept phase to field optimization, production follow-up, and hardware commissioning. Included topics: Technological challenges for the Large Hadron Collider at CERN Algebraic structures and vector fields Classical vector analysis Foundations of analytical field computation Fields and Potentials of line currents Harmonic fields The conceptual design of iron- and coil-dominated magnets Solenoids Complex analysis methods for magnet design Elementary beam optics and magnet polarities Numerical field calculation using finite- and boundary-elements Mesh generation Time transient effects in superconducting magnets, including superconductor magnetization and cable eddy-currents Quench simulation and magnet protection Mathematical optimization techniques using genetic and deterministic algorithms Practical experience from the electromagnetic design of the LHC magnets illustrates the analytical and numerical concepts, emphasizing the relevance of the presented methods to a great many applications in electrical engineering. The result is an indispensable guide for high-energy physicists, electrical engineers, materials scientists, applied mathematicians, and systems engineers.

Field Computation for Accelerator Magnets

Field Computation for Accelerator Magnets PDF Author: Stephan Russenschuck
Publisher: John Wiley & Sons
ISBN: 3527635475
Category : Science
Languages : en
Pages : 778

Book Description
Written by a leading expert on the electromagnetic design and engineering of superconducting accelerator magnets, this book offers the most comprehensive treatment of the subject to date. In concise and easy-to-read style, the author lays out both the mathematical basis for analytical and numerical field computation and their application to magnet design and manufacture. Of special interest is the presentation of a software-based design process that has been applied to the entire production cycle of accelerator magnets from the concept phase to field optimization, production follow-up, and hardware commissioning. Included topics: Technological challenges for the Large Hadron Collider at CERN Algebraic structures and vector fields Classical vector analysis Foundations of analytical field computation Fields and Potentials of line currents Harmonic fields The conceptual design of iron- and coil-dominated magnets Solenoids Complex analysis methods for magnet design Elementary beam optics and magnet polarities Numerical field calculation using finite- and boundary-elements Mesh generation Time transient effects in superconducting magnets, including superconductor magnetization and cable eddy-currents Quench simulation and magnet protection Mathematical optimization techniques using genetic and deterministic algorithms Practical experience from the electromagnetic design of the LHC magnets illustrates the analytical and numerical concepts, emphasizing the relevance of the presented methods to a great many applications in electrical engineering. The result is an indispensable guide for high-energy physicists, electrical engineers, materials scientists, applied mathematicians, and systems engineers.

Iron Dominated Electromagnets: Design, Fabrication, Assembly And Measurements

Iron Dominated Electromagnets: Design, Fabrication, Assembly And Measurements PDF Author: Jack T Tanabe
Publisher: World Scientific Publishing Company
ISBN: 9813101989
Category : Science
Languages : en
Pages : 355

Book Description
This unique book, written by one of the world's foremost specialists in the field, is devoted to the design of low and medium field electromagnets whose field level and quality (uniformity) are dominated by the pole shape and saturation characteristics of the iron yoke.The wide scope covers material ranging from the physical requirements for typical high performance accelerators, through the mathematical relationships which describe the shape of two-dimensional magnetic fields, to the mechanical fabrication, assembly, installation, and alignment of magnets in a typical accelerator lattice. In addition, stored energy concepts are used to develop magnetic force relationships and expressions for magnets with time varying fields.The material in the book is derived from lecture notes used in a course at the Lawrence Livermore National Laboratory and subsequently expanded for the U.S. Particle Accelerator School, making this text an invaluable reference for students planning to enter the field of high energy physics.Mathematical relationships tying together magnet design and measurement theory are derived from first principles, and chapters are included that describe mechanical design, fabrication, installation, and alignment. Some fabrication and assembly practices are reviewed to ensure personnel and equipment safety and operational reliability of electromagnets and their power supply systems. This additional coverage makes the book an important resource for those already in the particle accelerator business as well as those requiring the design and fabrication of low and medium field level magnets for charged particle beam transport in ion implantation and medical applications.

Superconducting Accelerator Magnets

Superconducting Accelerator Magnets PDF Author: K.-H. Mess
Publisher: World Scientific
ISBN: 9789810227906
Category : Science
Languages : en
Pages : 236

Book Description
The main topic of the book are the superconducting dipole and quadrupole magnets needed in high-energy accelerators and storage rings for protons, antiprotons or heavy ions. The basic principles of low-temperature superconductivity are outlined with special emphasis on the effects which are relevant for accelerator magnets. Properties and fabrication methods of practical superconductors are described. Analytical methods for field calculation and multipole expansion are presented for coils without and with iron yoke. The effect of yoke saturation and geometric distortions on field quality is studied. Persistent magnetization currents in the superconductor and eddy currents the copper part of the cable are analyzed in detail and their influence on field quality and magnet performance is investigated. Superconductor stability, quench origins and propagation and magnet protection are addressed. Some important concepts of accelerator physics are introduced which are needed to appreciate the demanding requirements on field quality in large storage rings. The operational experience with the superconducting HERA collider serves as an illustration. Finally superconducting correction coils and practical construction and fabrication methods of accelerator magnets are discussed. The physical and technical principles described in the book are substantiated with a wealth of experimental data on multipoles, persistent- and eddy-current effects, quench performance and much more.

Particle Accelerator Physics I

Particle Accelerator Physics I PDF Author: Helmut Wiedemann
Publisher: Springer Science & Business Media
ISBN: 3662038277
Category : Science
Languages : en
Pages : 465

Book Description
In this second edition of Particle Accelerator Physics, Vol. 1, is mainly a reprint of the first edition without significant changes in content. The bibliography has been updated to include more recent progress in the field of particle accelerators. With the help of many observant readers a number of misprints and errors could be eliminated. The author would like to express his sincere appreciation to all those who have pointed out such shortcomings and wel comes such information and any other relevant information in the future. The author would also like to express his special thanks to the editor Dr. Helmut Lotsch and his staff for editorial as well as technical advice and support which contributed greatly to the broad acceptance of this text and made a second edition of both volumes necessary. Palo Alto, California Helmut Wiedemann November 1998 VII Preface to the First Edition The purpose of this textbook is to provide a comprehensive introduction into the physics of particle accelerators and particle beam dynamics. Parti cle accelerators have become important research tools in high energy physics as well as sources of incoherent and coherent radiation from the far infra red to hard x-rays for basic and applied research. During years of teaching accelerator physics it became clear that the single most annoying obstacle to get introduced into the field is the absence of a suitable textbook.

Practical Design of Magnetostatic Structure Using Numerical Simulation

Practical Design of Magnetostatic Structure Using Numerical Simulation PDF Author: Qiuliang Wang
Publisher: John Wiley & Sons
ISBN: 1118398173
Category : Science
Languages : en
Pages : 484

Book Description
Magnets are widely used in industry, medical, scientific instruments, and electrical equipment. They are the basic tools for scientific research and electromagnetic devices. Numerical methods for the magnetic field analysis combined with mathematical optimization from practical applications of the magnets have been widely studied in recent years. It is necessary for professional researchers, engineers, and students to study these numerical methods for the complex magnet structure design instead of using traditional "trial-and-error" methods. Those working in this field will find this book useful as a reference to help reduce costs and obtain good magnetic field quality. Presents a clear introduction to magnet technology, followed by basic theories, numerical analysis, and practical applications Emphasizes the latest developments in magnet design, including MRI systems Provides comprehensive numerical techniques that provide solutions to practical problems Introduces the latest computation techniques for optimizing and characterizing the magnetostatic structure design Well organized and adaptable by researchers, engineers, lecturers, and students Appendix available on the Wiley Companion Website As a comprehensive treatment of the topic, Practical Design of Magnetostatic Structure Using Numerical Simulation is ideal for researchers in the field of magnets and their applications, materials scientists, structural engineers, and graduate students in electrical engineering. The book will also better equip mechanical engineers and aerospace engineers.

University Physics

University Physics PDF Author: Samuel J. Ling
Publisher:
ISBN: 9789888407613
Category : Science
Languages : en
Pages : 818

Book Description
University Physics is designed for the two- or three-semester calculus-based physics course. The text has been developed to meet the scope and sequence of most university physics courses and provides a foundation for a career in mathematics, science, or engineering. The book provides an important opportunity for students to learn the core concepts of physics and understand how those concepts apply to their lives and to the world around them. Due to the comprehensive nature of the material, we are offering the book in three volumes for flexibility and efficiency. Coverage and Scope Our University Physics textbook adheres to the scope and sequence of most two- and three-semester physics courses nationwide. We have worked to make physics interesting and accessible to students while maintaining the mathematical rigor inherent in the subject. With this objective in mind, the content of this textbook has been developed and arranged to provide a logical progression from fundamental to more advanced concepts, building upon what students have already learned and emphasizing connections between topics and between theory and applications. The goal of each section is to enable students not just to recognize concepts, but to work with them in ways that will be useful in later courses and future careers. The organization and pedagogical features were developed and vetted with feedback from science educators dedicated to the project. VOLUME II Unit 1: Thermodynamics Chapter 1: Temperature and Heat Chapter 2: The Kinetic Theory of Gases Chapter 3: The First Law of Thermodynamics Chapter 4: The Second Law of Thermodynamics Unit 2: Electricity and Magnetism Chapter 5: Electric Charges and Fields Chapter 6: Gauss's Law Chapter 7: Electric Potential Chapter 8: Capacitance Chapter 9: Current and Resistance Chapter 10: Direct-Current Circuits Chapter 11: Magnetic Forces and Fields Chapter 12: Sources of Magnetic Fields Chapter 13: Electromagnetic Induction Chapter 14: Inductance Chapter 15: Alternating-Current Circuits Chapter 16: Electromagnetic Waves

Nb3Sn Accelerator Magnets

Nb3Sn Accelerator Magnets PDF Author: Alexander V Zlobin
Publisher:
ISBN: 9781013271359
Category : Science
Languages : en
Pages : 460

Book Description
This open access book is written by world-recognized experts in the fields of applied superconductivity and superconducting accelerator magnet technologies. It provides a contemporary review and assessment of the experience in research and development of high-field accelerator dipole magnets based on Nb3Sn superconductor over the past five decades. The reader attains clear insight into the development and the main properties of Nb3Sn composite superconducting wires and Rutherford cables, and details of accelerator dipole designs, technologies and performance. Special attention is given to innovative features of the developed Nb3Sn magnets. The book concludes with a discussion of accelerator magnet needs for future circular colliders.; Broadens our understanding of design and performance limits of high-field Nb3Sn accelerator magnets for a future very high energy hadron collider Offers beginners a concise overview of the relevant design concepts for a new generation of superconducting accelerator magnets based on Nb3Sn superconductor Illustrates the complete process of accelerator magnet design and fabrication Provides a contemporary review and assessment of the past experience with Nb3Sn high-field dipole accelerator magnets Identifies the main open R&D issues for Nb3Sn high-field dipole magnets This work was published by Saint Philip Street Press pursuant to a Creative Commons license permitting commercial use. All rights not granted by the work's license are retained by the author or authors.

Magnetic Fields

Magnetic Fields PDF Author: Heinz E. Knoepfel
Publisher: John Wiley & Sons
ISBN: 3527617426
Category : Science
Languages : en
Pages : 643

Book Description
A unique resource for physicists and engineers working with magnetic fields An understanding of magnetic phenomena is essential for anyone working on the practical application of electromagnetic theory. Magnetic Fields: A Comprehensive Theoretical Treatise for Practical Use provides physicists and engineers with a thorough treatment of the magnetic aspects of classical electromagnetic theory, focusing on key issues and problems arising in the generation and application of magnetic fields. From magnetic potentials and diffusion phenomena to magnetohydrodynamics and properties of matter-topics are carefully selected for their relevance to the theoretical framework as well as current technologies. Outstanding in its organization, clarity, and scope, Magnetic Fields: * Examines a wide range of practical problems, from magnetomechanical devices to magnetic acceleration mechanisms * Opens each chapter with reference to pertinent engineering examples * Provides sufficient detail enabling readers to follow the derivation of the results * Discusses solution methods and their application to different problems * Includes more than 300 graphs, 40 tables, 2,000 numbered formulas, and extensive references to the professional literature * Reviews the essential mathematics in the appendices

Principles of Charged Particle Acceleration

Principles of Charged Particle Acceleration PDF Author: Stanley Humphries
Publisher: Courier Corporation
ISBN: 0486320634
Category : Science
Languages : en
Pages : 588

Book Description
This authoritative text offers a unified, programmed summary of the principles underlying all charged particle accelerators — it also doubles as a reference collection of equations and material essential to accelerator development and beam applications. The only text that covers linear induction accelerators, the work contains straightforward expositions of basic principles rather than detailed theories of specialized areas. 1986 edition.

Electromagnetic Field Theory for Engineers and Physicists

Electromagnetic Field Theory for Engineers and Physicists PDF Author: Günther Lehner
Publisher: Springer Science & Business Media
ISBN: 3540763066
Category : Technology & Engineering
Languages : en
Pages : 687

Book Description
Discussed is the electromagnetic field theory and its mathematical methods. Maxwell’s equations are presented and explained. It follows a detailed discussion of electrostatics, flux, magnetostatics, quasi stationary fields and electromagnetic fields. The author presents how to apply numerical methods like finite differences, finite elements, boundary elements, image charge methods, and Monte-Carlo methods to field theory problems. He offers an outlook on fundamental issues in physics including quantum mechanics. Some of these issues are still unanswered questions. A chapter dedicated to the theory of special relativity, which allows to simplify a number of field theory problems, complements this book. A book whose usefulness is not limited to engineering students, but can be very helpful for physicists and other branches of science.