Feasibility of Breeding in Hard Spectrum Boiling Water Reactors with Oxide and Nitride Fuels PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Feasibility of Breeding in Hard Spectrum Boiling Water Reactors with Oxide and Nitride Fuels PDF full book. Access full book title Feasibility of Breeding in Hard Spectrum Boiling Water Reactors with Oxide and Nitride Fuels by Bo Feng (Ph. D.). Download full books in PDF and EPUB format.

Feasibility of Breeding in Hard Spectrum Boiling Water Reactors with Oxide and Nitride Fuels

Feasibility of Breeding in Hard Spectrum Boiling Water Reactors with Oxide and Nitride Fuels PDF Author: Bo Feng (Ph. D.)
Publisher:
ISBN:
Category :
Languages : en
Pages : 269

Book Description
This study assesses the neutronic, thermal-hydraulic, and fuel performance aspects of using nitride fuel in place of oxides in Pu-based high conversion light water reactor designs. Using the higher density nitride fuel hardens the neutron energy spectrum and results in higher breeding ratios. The state-of-the-art high conversion light water reactor, the Resource-renewable Boiling Water Reactor (RBWR), served as the template core upon which comparative studies between nitride and oxide fuels were performed. A 1/3 core reactor physics model was developed for the RBWR using the stochastic transport code MCNP. The code was coupled with a lumped channel thermalhydraulics 5-channel model for steady-state analyses. The depletion code MCODE, which links MCNP with ORIGEN, was used for all burnup calculations. Select physics parameters were calculated and with the exception of the void coefficients, agreed with reported data. The void coefficients of the coupled core were calculated to be slightly positive using two different methods (10% power increase and 5% flow reduction). The standard RBWR assembly designs, which use tight lattice hexagonal fuel rod arrays, with oxide fuel were then replaced with various nitride fuel assembly designs to determine the potential increase in breeding ratio, the potential to breed with pressurized water, and the potential to improve the critical power ratio with a wider pin pitch. Without changing the assembly geometry or discharge burnup, using nitride fuel resulted in a breeding ratio of 1.14. Using single-phase liquid water, the nitride fuel RBWR assembly resulted in a conversion ratio of 1.00. Another nitride fuel assembly design with boiling water maintained a 1.04 breeding ratio while increasing the pitch-todiameter ratio from 1.13 to 1.20. This modification increased the hot assembly critical power ratio from 1.22 to 1.36, as calculated using the Liu-2007 correlation. A high-porosity nitride fuel is recommended for high burnup conditions, to accommodate the nitride fuel's higher swelling and less favorable mechanical properties compared to the oxide fuel. The high porosity allows additional volume for pressure-induced densification, alleviating swelling and subsequent cladding strain. To predict the performance of high-porosity nitride fuel, fission gas and fuel behavior mechanistic models were developed for high burnup and low-temperature conditions. These models were validated with reported irradiation data and implemented, along with fuel material properties, into the steady-state fuel behavior code FRAPCON-EP. Under simulated RBWR conditions, a fuel density no more than 85% of theoretical density is recommended to maintain satisfactory fuel performance.

Feasibility of Breeding in Hard Spectrum Boiling Water Reactors with Oxide and Nitride Fuels

Feasibility of Breeding in Hard Spectrum Boiling Water Reactors with Oxide and Nitride Fuels PDF Author: Bo Feng (Ph. D.)
Publisher:
ISBN:
Category :
Languages : en
Pages : 269

Book Description
This study assesses the neutronic, thermal-hydraulic, and fuel performance aspects of using nitride fuel in place of oxides in Pu-based high conversion light water reactor designs. Using the higher density nitride fuel hardens the neutron energy spectrum and results in higher breeding ratios. The state-of-the-art high conversion light water reactor, the Resource-renewable Boiling Water Reactor (RBWR), served as the template core upon which comparative studies between nitride and oxide fuels were performed. A 1/3 core reactor physics model was developed for the RBWR using the stochastic transport code MCNP. The code was coupled with a lumped channel thermalhydraulics 5-channel model for steady-state analyses. The depletion code MCODE, which links MCNP with ORIGEN, was used for all burnup calculations. Select physics parameters were calculated and with the exception of the void coefficients, agreed with reported data. The void coefficients of the coupled core were calculated to be slightly positive using two different methods (10% power increase and 5% flow reduction). The standard RBWR assembly designs, which use tight lattice hexagonal fuel rod arrays, with oxide fuel were then replaced with various nitride fuel assembly designs to determine the potential increase in breeding ratio, the potential to breed with pressurized water, and the potential to improve the critical power ratio with a wider pin pitch. Without changing the assembly geometry or discharge burnup, using nitride fuel resulted in a breeding ratio of 1.14. Using single-phase liquid water, the nitride fuel RBWR assembly resulted in a conversion ratio of 1.00. Another nitride fuel assembly design with boiling water maintained a 1.04 breeding ratio while increasing the pitch-todiameter ratio from 1.13 to 1.20. This modification increased the hot assembly critical power ratio from 1.22 to 1.36, as calculated using the Liu-2007 correlation. A high-porosity nitride fuel is recommended for high burnup conditions, to accommodate the nitride fuel's higher swelling and less favorable mechanical properties compared to the oxide fuel. The high porosity allows additional volume for pressure-induced densification, alleviating swelling and subsequent cladding strain. To predict the performance of high-porosity nitride fuel, fission gas and fuel behavior mechanistic models were developed for high burnup and low-temperature conditions. These models were validated with reported irradiation data and implemented, along with fuel material properties, into the steady-state fuel behavior code FRAPCON-EP. Under simulated RBWR conditions, a fuel density no more than 85% of theoretical density is recommended to maintain satisfactory fuel performance.

Reactor Fuels, Materials and Systems under Extreme Environments

Reactor Fuels, Materials and Systems under Extreme Environments PDF Author: Wenzhong Zhou
Publisher: Frontiers Media SA
ISBN: 2889747662
Category : Technology & Engineering
Languages : en
Pages : 360

Book Description


Thorium Fuel Cycle

Thorium Fuel Cycle PDF Author: International Atomic Energy Agency
Publisher:
ISBN:
Category : Business & Economics
Languages : en
Pages : 120

Book Description
Provides a critical review of the thorium fuel cycle: potential benefits and challenges in the thorium fuel cycle, mainly based on the latest developments at the front end of the fuel cycle, applying thorium fuel cycle options, and at the back end of the thorium fuel cycle.

Viability of Inert Matrix Fuel in Reducing Plutonium Amounts in Reactors

Viability of Inert Matrix Fuel in Reducing Plutonium Amounts in Reactors PDF Author: International Atomic Energy Agency
Publisher: IAEA
ISBN:
Category : Business & Economics
Languages : en
Pages : 100

Book Description
The reactors around the world have produced more than 2000 tonnes of plutonium, contained in spent fuel or as separated forms through reprocessing. Disposition of fissile materials has become a primary concern of nuclear non-proliferation efforts worldwide. There is a significant interest in IAEA Member States to develop proliferation resistant nuclear fuel cycles for incineration of plutonium such as inert matrix fuels (IMFs). This publication reviews the status of potential IMF candidates and describes several identified candidate materials for both fast and thermal reactors: MgO, ZrO2, SiC, Zr alloy, SiAl, ZrN; some of these have undergone test irradiations and post irradiation examination. Also discussed are modelling of IMF fuel performance and safety analysis. System studies have identified strategies for both implementation of IMF fuel as homogeneous or heterogeneous phases, as assemblies or core loadings and in existing reactors in the shorter term, as well as in new reactors in the longer term.

Status of Fast Reactor Research and Technology Development

Status of Fast Reactor Research and Technology Development PDF Author: International Atomic Energy Agency
Publisher:
ISBN: 9781523130191
Category : Fast reactors
Languages : en
Pages : 0

Book Description
"Based on a recommendation from the Technical Working Group on Fast Reactors, this publication is a regular update of previous publications on fast reactor technology. The publication provides comprehensive and detailed information on the technology of fast neutron reactors. The focus is on practical issues that are useful to engineers, scientists, managers, university students and professors. The main issues of discussion are experience in design, construction, operation and decommissioning, various areas of research and development, engineering, safety and national strategies, and public acceptance of fast reactors. In the summary the reader will find national strategies, international initiatives on innovative (i.e. Generation IV) systems and an assessment of public acceptance as related to fast reactors."--Résumé de l'éditeur.

Improving Fuel Cycle Design and Safety Characteristics of a Gas Cooled Fast Reactor

Improving Fuel Cycle Design and Safety Characteristics of a Gas Cooled Fast Reactor PDF Author: Willem Frederik Geert van Rooijen
Publisher: IOS Press
ISBN: 9781586036966
Category : Technology & Engineering
Languages : en
Pages : 160

Book Description
The Generation IV Forum is an international nuclear energy research initiative aimed at developing the fourth generation of nuclear reactors, envisaged to enter service halfway the 21st century. One of the Generation IV reactor systems is the Gas Cooled Fast Reactor (GCFR), the subject of study in this thesis. The Generation IV reactor concepts should improve all aspects of nuclear power generation. Within Generation IV, the GCFR concept specifically targets sustainability of nuclear power generation. The Gas Cooled Fast Reactor core power density is high in comparison to other gas cooled reactor concepts. Like all nuclear reactors, the GCFR produces decay heat after shut down, which has to be transported out of the reactor under all circumstances. The layout of the primary system therefore focuses on using natural convection Decay Heat Removal (DHR) where possible, with a large coolant fraction in the core to reduce friction losses.

Sodium Fast Reactors with Closed Fuel Cycle

Sodium Fast Reactors with Closed Fuel Cycle PDF Author: Baldev Raj
Publisher: CRC Press
ISBN: 1466587695
Category : Science
Languages : en
Pages : 901

Book Description
Sodium Fast Reactors with Closed Fuel Cycle delivers a detailed discussion of an important technology that is being harnessed for commercial energy production in many parts of the world. Presenting the state of the art of sodium-cooled fast reactors with closed fuel cycles, this book:Offers in-depth coverage of reactor physics, materials, design, s

Performance Analysis Review of Thorium TRISO Coated Particles During Manufacture, Irradiation and Accident Condition Heating Tests

Performance Analysis Review of Thorium TRISO Coated Particles During Manufacture, Irradiation and Accident Condition Heating Tests PDF Author: International Atomic Energy Agency
Publisher: IAEA Tecdoc
ISBN: 9789201007155
Category : Science
Languages : en
Pages : 0

Book Description
This publication is the outcome of an IAEA coordinated research project on near term and promising long term options for deployment of thorium based nuclear energy. It is based on the compilation and analysis of available results on thorium tristructural isotropic (TRISO) coated particle fuel performance in manufacturing during irradiation and accident condition heating tests. As a result, the project participants concluded that the performance statistics for the high enriched thoria urania TRISO fuel system are in perfect concert with those state of the art requirements for present day high temperature reactor concepts.

Thermal Hydraulics Aspects of Liquid Metal Cooled Nuclear Reactors

Thermal Hydraulics Aspects of Liquid Metal Cooled Nuclear Reactors PDF Author: Ferry Roelofs
Publisher: Woodhead Publishing
ISBN: 0081019815
Category : Science
Languages : en
Pages : 464

Book Description
Thermal Hydraulics Aspects of Liquid Metal cooled Nuclear Reactors is a comprehensive collection of liquid metal thermal hydraulics research and development for nuclear liquid metal reactor applications. A deliverable of the SESAME H2020 project, this book is written by top European experts who discuss topics of note that are supplemented by an international contribution from U.S. partners within the framework of the NEAMS program under the U.S. DOE. This book is a convenient source for students, professionals and academics interested in liquid metal thermal hydraulics in nuclear applications. In addition, it will also help newcomers become familiar with current techniques and knowledge. Presents the latest information on one of the deliverables of the SESAME H2020 project Provides an overview on the design and history of liquid metal cooled fast reactors worldwide Describes the challenges in thermal hydraulics related to the design and safety analysis of liquid metal cooled fast reactors Includes the codes, methods, correlations, guidelines and limitations for liquid metal fast reactor thermal hydraulic simulations clearly Discusses state-of-the-art, multi-scale techniques for liquid metal fast reactor thermal hydraulics applications

Fast Reactor Fuel Cycles

Fast Reactor Fuel Cycles PDF Author:
Publisher: Thomas Telford Publishing
ISBN:
Category : Technology & Engineering
Languages : en
Pages : 420

Book Description
Proceedings of an International Conference organized by the British Nuclear Energy Society and co-sponsored by the Royal Society of Chemistry and the Institution of Metallurgists LONDON, 9-12 NOVEMBER 1981