Fast Direct Solvers for Elliptic PDEs PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Fast Direct Solvers for Elliptic PDEs PDF full book. Access full book title Fast Direct Solvers for Elliptic PDEs by Per-Gunnar Martinsson. Download full books in PDF and EPUB format.

Fast Direct Solvers for Elliptic PDEs

Fast Direct Solvers for Elliptic PDEs PDF Author: Per-Gunnar Martinsson
Publisher: SIAM
ISBN: 1611976049
Category : Mathematics
Languages : en
Pages : 332

Book Description
Fast solvers for elliptic PDEs form a pillar of scientific computing. They enable detailed and accurate simulations of electromagnetic fields, fluid flows, biochemical processes, and much more. This textbook provides an introduction to fast solvers from the point of view of integral equation formulations, which lead to unparalleled accuracy and speed in many applications. The focus is on fast algorithms for handling dense matrices that arise in the discretization of integral operators, such as the fast multipole method and fast direct solvers. While the emphasis is on techniques for dense matrices, the text also describes how similar techniques give rise to linear complexity algorithms for computing the inverse or the LU factorization of a sparse matrix resulting from the direct discretization of an elliptic PDE. This is the first textbook to detail the active field of fast direct solvers, introducing readers to modern linear algebraic techniques for accelerating computations, such as randomized algorithms, interpolative decompositions, and data-sparse hierarchical matrix representations. Written with an emphasis on mathematical intuition rather than theoretical details, it is richly illustrated and provides pseudocode for all key techniques. Fast Direct Solvers for Elliptic PDEs is appropriate for graduate students in applied mathematics and scientific computing, engineers and scientists looking for an accessible introduction to integral equation methods and fast solvers, and researchers in computational mathematics who want to quickly catch up on recent advances in randomized algorithms and techniques for working with data-sparse matrices.

Fast Direct Solvers for Elliptic PDEs

Fast Direct Solvers for Elliptic PDEs PDF Author: Per-Gunnar Martinsson
Publisher: SIAM
ISBN: 1611976049
Category : Mathematics
Languages : en
Pages : 332

Book Description
Fast solvers for elliptic PDEs form a pillar of scientific computing. They enable detailed and accurate simulations of electromagnetic fields, fluid flows, biochemical processes, and much more. This textbook provides an introduction to fast solvers from the point of view of integral equation formulations, which lead to unparalleled accuracy and speed in many applications. The focus is on fast algorithms for handling dense matrices that arise in the discretization of integral operators, such as the fast multipole method and fast direct solvers. While the emphasis is on techniques for dense matrices, the text also describes how similar techniques give rise to linear complexity algorithms for computing the inverse or the LU factorization of a sparse matrix resulting from the direct discretization of an elliptic PDE. This is the first textbook to detail the active field of fast direct solvers, introducing readers to modern linear algebraic techniques for accelerating computations, such as randomized algorithms, interpolative decompositions, and data-sparse hierarchical matrix representations. Written with an emphasis on mathematical intuition rather than theoretical details, it is richly illustrated and provides pseudocode for all key techniques. Fast Direct Solvers for Elliptic PDEs is appropriate for graduate students in applied mathematics and scientific computing, engineers and scientists looking for an accessible introduction to integral equation methods and fast solvers, and researchers in computational mathematics who want to quickly catch up on recent advances in randomized algorithms and techniques for working with data-sparse matrices.

A Primer on Radial Basis Functions with Applications to the Geosciences

A Primer on Radial Basis Functions with Applications to the Geosciences PDF Author: Bengt Fornberg
Publisher: SIAM
ISBN: 161197402X
Category : Science
Languages : en
Pages : 226

Book Description
?Adapted from a series of lectures given by the authors, this monograph focuses on radial basis functions (RBFs), a powerful numerical methodology for solving PDEs to high accuracy in any number of dimensions. This method applies to problems across a wide range of PDEs arising in fluid mechanics, wave motions, astro- and geosciences, mathematical biology, and other areas and has lately been shown to compete successfully against the very best previous approaches on some large benchmark problems. Using examples and heuristic explanations to create a practical and intuitive perspective, the authors address how, when, and why RBF-based methods work.? The authors trace the algorithmic evolution of RBFs, starting with brief introductions to finite difference (FD) and pseudospectral (PS) methods and following a logical progression to global RBFs and then to RBF-generated FD (RBF-FD) methods. The RBF-FD method, conceived in 2000, has proven to be a leading candidate for numerical simulations in an increasingly wide range of applications, including seismic exploration for oil and gas, weather and climate modeling, and electromagnetics, among others.? This is the first survey in book format of the RBF-FD methodology and is suitable as the text for a one-semester first-year graduate class.

Spherical Radial Basis Functions, Theory and Applications

Spherical Radial Basis Functions, Theory and Applications PDF Author: Simon Hubbert
Publisher: Springer
ISBN: 331917939X
Category : Mathematics
Languages : en
Pages : 150

Book Description
This book is the first to be devoted to the theory and applications of spherical (radial) basis functions (SBFs), which is rapidly emerging as one of the most promising techniques for solving problems where approximations are needed on the surface of a sphere. The aim of the book is to provide enough theoretical and practical details for the reader to be able to implement the SBF methods to solve real world problems. The authors stress the close connection between the theory of SBFs and that of the more well-known family of radial basis functions (RBFs), which are well-established tools for solving approximation theory problems on more general domains. The unique solvability of the SBF interpolation method for data fitting problems is established and an in-depth investigation of its accuracy is provided. Two chapters are devoted to partial differential equations (PDEs). One deals with the practical implementation of an SBF-based solution to an elliptic PDE and another which describes an SBF approach for solving a parabolic time-dependent PDE, complete with error analysis. The theory developed is illuminated with numerical experiments throughout. Spherical Radial Basis Functions, Theory and Applications will be of interest to graduate students and researchers in mathematics and related fields such as the geophysical sciences and statistics.

Meshfree Approximation Methods with MATLAB

Meshfree Approximation Methods with MATLAB PDF Author: Gregory E. Fasshauer
Publisher: World Scientific
ISBN: 981270633X
Category : Technology & Engineering
Languages : en
Pages : 520

Book Description
Meshfree approximation methods are a relatively new area of research. This book provides the salient theoretical results needed for a basic understanding of meshfree approximation methods. It places emphasis on a hands-on approach that includes MATLAB routines for all basic operations.

Surface Fitting and Multiresolution Methods

Surface Fitting and Multiresolution Methods PDF Author: Alain Le Méhauté
Publisher:
ISBN: 9780826512949
Category : Approximation theory
Languages : en
Pages : 0

Book Description
Refereed and edited papers on the most current developments in the theory and applications of curves and surfaces.

Partial Differential Equations

Partial Differential Equations PDF Author: Walter A. Strauss
Publisher: John Wiley & Sons
ISBN: 0470054565
Category : Mathematics
Languages : en
Pages : 467

Book Description
Our understanding of the fundamental processes of the natural world is based to a large extent on partial differential equations (PDEs). The second edition of Partial Differential Equations provides an introduction to the basic properties of PDEs and the ideas and techniques that have proven useful in analyzing them. It provides the student a broad perspective on the subject, illustrates the incredibly rich variety of phenomena encompassed by it, and imparts a working knowledge of the most important techniques of analysis of the solutions of the equations. In this book mathematical jargon is minimized. Our focus is on the three most classical PDEs: the wave, heat and Laplace equations. Advanced concepts are introduced frequently but with the least possible technicalities. The book is flexibly designed for juniors, seniors or beginning graduate students in science, engineering or mathematics.

Solving Problems in Multiply Connected Domains

Solving Problems in Multiply Connected Domains PDF Author: Darren Crowdy
Publisher: SIAM
ISBN: 1611976154
Category : Mathematics
Languages : en
Pages : 457

Book Description
Whenever two or more objects or entities—be they bubbles, vortices, black holes, magnets, colloidal particles, microorganisms, swimming bacteria, Brownian random walkers, airfoils, turbine blades, electrified drops, magnetized particles, dislocations, cracks, or heterogeneities in an elastic solid—interact in some ambient medium, they make holes in that medium. Such holey regions with interacting entities are called multiply connected. This book describes a novel mathematical framework for solving problems in two-dimensional, multiply connected regions. The framework is built on a central theoretical concept: the prime function, whose significance for the applied sciences, especially for solving problems in multiply connected domains, has been missed until recent work by the author. This monograph is a one-of-a-kind treatise on the prime function associated with multiply connected domains and how to use it in applications. The book contains many results familiar in the simply connected, or single-entity, case that are generalized naturally to any number of entities, in many instances for the first time. Solving Problems in Multiply Connected Domains is aimed at applied and pure mathematicians, engineers, physicists, and other natural scientists; the framework it describes finds application in a diverse array of contexts. The book provides a rich source of project material for undergraduate and graduate courses in the applied sciences and could serve as a complement to standard texts on advanced calculus, potential theory, partial differential equations and complex analysis, and as a supplement to texts on applied mathematical methods in engineering and science.

Time Parallel Time Integration

Time Parallel Time Integration PDF Author: Martin J. Gander
Publisher: SIAM
ISBN: 1611978025
Category : Mathematics
Languages : en
Pages : 273

Book Description
Predicting the future is a difficult task but, as with the weather, it is possible with good models. But how does one predict the far future before the near future is known? Time parallel time integration, also known as PinT (Parallel-in-Time) methods, aims to predict the near and far future simultaneously. In this self-contained book, the first on the topic, readers will find a comprehensive and up-to-date description of methods and techniques that have been developed to do just this. The authors describe the four main classes of PinT methods: shooting-type methods, waveform relaxation methods, time parallel multigrid methods, and direct time parallel methods. In addition, they provide historical background for each of the method classes, complete convergence analyses for the most representative variants of the methods in each class, and illustrations and runnable MATLAB code. An ideal introduction to this exciting and very active research field, Time Parallel Time Integration can be used for independent study or for a graduate course.

Inverse Scattering Theory and Transmission Eigenvalues

Inverse Scattering Theory and Transmission Eigenvalues PDF Author: Fioralba Cakoni
Publisher: SIAM
ISBN: 1611977428
Category : Mathematics
Languages : en
Pages : 259

Book Description
Inverse scattering theory is a major theme in applied mathematics, with applications to such diverse areas as medical imaging, geophysical exploration, and nondestructive testing. The inverse scattering problem is both nonlinear and ill-posed, thus presenting challenges in the development of efficient inversion algorithms. A further complication is that anisotropic materials cannot be uniquely determined from given scattering data. In the first edition of Inverse Scattering Theory and Transmission Eigenvalues, the authors discussed methods for determining the support of inhomogeneous media from measured far field data and the role of transmission eigenvalue problems in the mathematical development of these methods. In this second edition, three new chapters describe recent developments in inverse scattering theory. In particular, the authors explore the use of modified background media in the nondestructive testing of materials and methods for determining the modified transmission eigenvalues that arise in such applications from measured far field data. They also examine nonscattering wave numbers—a subset of transmission eigenvalues—using techniques taken from the theory of free boundary value problems for elliptic partial differential equations and discuss the dualism of scattering poles and transmission eigenvalues that has led to new methods for the numerical computation of scattering poles. This book will be of interest to research mathematicians and engineers and physicists working on problems in target identification. It will also be useful to advanced graduate students in many areas of applied mathematics.

An Introduction to Neural Network Methods for Differential Equations

An Introduction to Neural Network Methods for Differential Equations PDF Author: Neha Yadav
Publisher: Springer
ISBN: 9401798168
Category : Mathematics
Languages : en
Pages : 124

Book Description
This book introduces a variety of neural network methods for solving differential equations arising in science and engineering. The emphasis is placed on a deep understanding of the neural network techniques, which has been presented in a mostly heuristic and intuitive manner. This approach will enable the reader to understand the working, efficiency and shortcomings of each neural network technique for solving differential equations. The objective of this book is to provide the reader with a sound understanding of the foundations of neural networks and a comprehensive introduction to neural network methods for solving differential equations together with recent developments in the techniques and their applications. The book comprises four major sections. Section I consists of a brief overview of differential equations and the relevant physical problems arising in science and engineering. Section II illustrates the history of neural networks starting from their beginnings in the 1940s through to the renewed interest of the 1980s. A general introduction to neural networks and learning technologies is presented in Section III. This section also includes the description of the multilayer perceptron and its learning methods. In Section IV, the different neural network methods for solving differential equations are introduced, including discussion of the most recent developments in the field. Advanced students and researchers in mathematics, computer science and various disciplines in science and engineering will find this book a valuable reference source.