Extrinsic Geometric Flows PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Extrinsic Geometric Flows PDF full book. Access full book title Extrinsic Geometric Flows by Ben Andrews. Download full books in PDF and EPUB format.

Extrinsic Geometric Flows

Extrinsic Geometric Flows PDF Author: Ben Andrews
Publisher: American Mathematical Society
ISBN: 1470464578
Category : Mathematics
Languages : en
Pages : 790

Book Description
Extrinsic geometric flows are characterized by a submanifold evolving in an ambient space with velocity determined by its extrinsic curvature. The goal of this book is to give an extensive introduction to a few of the most prominent extrinsic flows, namely, the curve shortening flow, the mean curvature flow, the Gauß curvature flow, the inverse-mean curvature flow, and fully nonlinear flows of mean curvature and inverse-mean curvature type. The authors highlight techniques and behaviors that frequently arise in the study of these (and other) flows. To illustrate the broad applicability of the techniques developed, they also consider general classes of fully nonlinear curvature flows. The book is written at the level of a graduate student who has had a basic course in differential geometry and has some familiarity with partial differential equations. It is intended also to be useful as a reference for specialists. In general, the authors provide detailed proofs, although for some more specialized results they may only present the main ideas; in such cases, they provide references for complete proofs. A brief survey of additional topics, with extensive references, can be found in the notes and commentary at the end of each chapter.

Extrinsic Geometric Flows

Extrinsic Geometric Flows PDF Author: Ben Andrews
Publisher: American Mathematical Society
ISBN: 1470464578
Category : Mathematics
Languages : en
Pages : 790

Book Description
Extrinsic geometric flows are characterized by a submanifold evolving in an ambient space with velocity determined by its extrinsic curvature. The goal of this book is to give an extensive introduction to a few of the most prominent extrinsic flows, namely, the curve shortening flow, the mean curvature flow, the Gauß curvature flow, the inverse-mean curvature flow, and fully nonlinear flows of mean curvature and inverse-mean curvature type. The authors highlight techniques and behaviors that frequently arise in the study of these (and other) flows. To illustrate the broad applicability of the techniques developed, they also consider general classes of fully nonlinear curvature flows. The book is written at the level of a graduate student who has had a basic course in differential geometry and has some familiarity with partial differential equations. It is intended also to be useful as a reference for specialists. In general, the authors provide detailed proofs, although for some more specialized results they may only present the main ideas; in such cases, they provide references for complete proofs. A brief survey of additional topics, with extensive references, can be found in the notes and commentary at the end of each chapter.

Extrinsic Geometry of Foliations

Extrinsic Geometry of Foliations PDF Author: Vladimir Rovenski
Publisher: Springer Nature
ISBN: 3030700674
Category : Mathematics
Languages : en
Pages : 319

Book Description
This book is devoted to geometric problems of foliation theory, in particular those related to extrinsic geometry, modern branch of Riemannian Geometry. The concept of mixed curvature is central to the discussion, and a version of the deep problem of the Ricci curvature for the case of mixed curvature of foliations is examined. The book is divided into five chapters that deal with integral and variation formulas and curvature and dynamics of foliations. Different approaches and methods (local and global, regular and singular) in solving the problems are described using integral and variation formulas, extrinsic geometric flows, generalizations of the Ricci and scalar curvatures, pseudo-Riemannian and metric-affine geometries, and 'computable' Finsler metrics. The book presents the state of the art in geometric and analytical theory of foliations as a continuation of the authors' life-long work in extrinsic geometry. It is designed for newcomers to the field as well as experienced geometers working in Riemannian geometry, foliation theory, differential topology, and a wide range of researchers in differential equations and their applications. It may also be a useful supplement to postgraduate level work and can inspire new interesting topics to explore.

Intrinsic Geometric Flows on Manifolds of Revolution

Intrinsic Geometric Flows on Manifolds of Revolution PDF Author: Jefferson Taft
Publisher:
ISBN:
Category :
Languages : en
Pages : 164

Book Description
An intrinsic geometric flow is an evolution of a Riemannian metric by a two-tensor. An extrinsic geometric flow is an evolution of an immersion of a manifold into Euclidean space. An extrinsic flow induces an evolution of a metric because any immersed manifold inherits a Riemannian metric from Euclidean space. In this paper we discuss the inverse problem of specifying an evolution of a metric and then seeking an extrinsic geometric flow which induces the given metric evolution. We limit our discussion to the case of manifolds that are rotationally symmetric and embeddable with codimension one. In this case, we reduce an intrinsic geometric flow to a plane curve evolution. In the specific cases we study, we are able to further simplify the evolution to an evolution of a function of one variable. We provide soliton equations and give proofs that some soliton metrics exist.

Extrinsic Geometric Flows

Extrinsic Geometric Flows PDF Author: Bennett Chow
Publisher: American Mathematical Soc.
ISBN: 147045596X
Category : Education
Languages : en
Pages : 790

Book Description
Extrinsic geometric flows are characterized by a submanifold evolving in an ambient space with velocity determined by its extrinsic curvature. The goal of this book is to give an extensive introduction to a few of the most prominent extrinsic flows, namely, the curve shortening flow, the mean curvature flow, the Gauß curvature flow, the inverse-mean curvature flow, and fully nonlinear flows of mean curvature and inverse-mean curvature type. The authors highlight techniques and behaviors that frequently arise in the study of these (and other) flows. To illustrate the broad applicability of the techniques developed, they also consider general classes of fully nonlinear curvature flows. The book is written at the level of a graduate student who has had a basic course in differential geometry and has some familiarity with partial differential equations. It is intended also to be useful as a reference for specialists. In general, the authors provide detailed proofs, although for some more specialized results they may only present the main ideas; in such cases, they provide references for complete proofs. A brief survey of additional topics, with extensive references, can be found in the notes and commentary at the end of each chapter.

Geometric Flows

Geometric Flows PDF Author: Huai-Dong Cao
Publisher:
ISBN:
Category : Geometry, Differential
Languages : en
Pages : 368

Book Description


Topics in Extrinsic Geometry of Codimension-One Foliations

Topics in Extrinsic Geometry of Codimension-One Foliations PDF Author: Vladimir Rovenski
Publisher: Springer Science & Business Media
ISBN: 1441999086
Category : Mathematics
Languages : en
Pages : 129

Book Description
Extrinsic geometry describes properties of foliations on Riemannian manifolds which can be expressed in terms of the second fundamental form of the leaves. The authors of Topics in Extrinsic Geometry of Codimension-One Foliations achieve a technical tour de force, which will lead to important geometric results. The Integral Formulae, introduced in chapter 1, is a useful for problems such as: prescribing higher mean curvatures of foliations, minimizing volume and energy defined for vector or plane fields on manifolds, and existence of foliations whose leaves enjoy given geometric properties. The Integral Formulae steams from a Reeb formula, for foliations on space forms which generalize the classical ones. For a special auxiliary functions the formulae involve the Newton transformations of the Weingarten operator. The central topic of this book is Extrinsic Geometric Flow (EGF) on foliated manifolds, which may be a tool for prescribing extrinsic geometric properties of foliations. To develop EGF, one needs Variational Formulae, revealed in chapter 2, which expresses a change in different extrinsic geometric quantities of a fixed foliation under leaf-wise variation of the Riemannian Structure of the ambient manifold. Chapter 3 defines a general notion of EGF and studies the evolution of Riemannian metrics along the trajectories of this flow(e.g., describes the short-time existence and uniqueness theory and estimate the maximal existence time).Some special solutions (called Extrinsic Geometric Solutions) of EGF are presented and are of great interest, since they provide Riemannian Structures with very particular geometry of the leaves. This work is aimed at those who have an interest in the differential geometry of submanifolds and foliations of Riemannian manifolds.

Mean Curvature Flow and Isoperimetric Inequalities

Mean Curvature Flow and Isoperimetric Inequalities PDF Author: Manuel Ritoré
Publisher: Springer Science & Business Media
ISBN: 3034602138
Category : Mathematics
Languages : en
Pages : 113

Book Description
Geometric flows have many applications in physics and geometry. The mean curvature flow occurs in the description of the interface evolution in certain physical models. This is related to the property that such a flow is the gradient flow of the area functional and therefore appears naturally in problems where a surface energy is minimized. The mean curvature flow also has many geometric applications, in analogy with the Ricci flow of metrics on abstract riemannian manifolds. One can use this flow as a tool to obtain classification results for surfaces satisfying certain curvature conditions, as well as to construct minimal surfaces. Geometric flows, obtained from solutions of geometric parabolic equations, can be considered as an alternative tool to prove isoperimetric inequalities. On the other hand, isoperimetric inequalities can help in treating several aspects of convergence of these flows. Isoperimetric inequalities have many applications in other fields of geometry, like hyperbolic manifolds.

Geometric Flows

Geometric Flows PDF Author: Huai-Dong Cao
Publisher:
ISBN: 9781571461827
Category :
Languages : en
Pages : 347

Book Description


Geometric Flows and the Geometry of Space-time

Geometric Flows and the Geometry of Space-time PDF Author: Vicente Cortés
Publisher: Birkhäuser
ISBN: 9783030011253
Category : Mathematics
Languages : en
Pages : 121

Book Description
This book consists of two lecture notes on geometric flow equations (O. Schnürer) and Lorentzian geometry - holonomy, spinors and Cauchy Problems (H. Baum and T. Leistner) written by leading experts in these fields. It grew out of the summer school “Geometric flows and the geometry of space-time” held in Hamburg (2016) and provides an excellent introduction for students of mathematics and theoretical physics to important themes of current research in global analysis, differential geometry and mathematical physics

Variational Problems in Riemannian Geometry

Variational Problems in Riemannian Geometry PDF Author: Paul Baird
Publisher: Springer Science & Business Media
ISBN: 9783764324322
Category : Mathematics
Languages : en
Pages : 176

Book Description
This book collects invited contributions by specialists in the domain of elliptic partial differential equations and geometric flows. The articles provide a balance between introductory surveys and the most recent research, with a unique perspective on singular phenomena. Notions such as scans and the study of the evolution by curvature of networks of curves are completely new and lead the reader to the frontiers of the domain. The intended readership are postgraduate students and researchers in the fields of elliptic and parabolic partial differential equations that arise from variational problems, as well as researchers in related fields such as particle physics and optimization.