Extremal Problems for Finite Sets PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Extremal Problems for Finite Sets PDF full book. Access full book title Extremal Problems for Finite Sets by Peter Frankl. Download full books in PDF and EPUB format.

Extremal Problems for Finite Sets

Extremal Problems for Finite Sets PDF Author: Peter Frankl
Publisher: American Mathematical Soc.
ISBN: 1470440393
Category : Mathematics
Languages : en
Pages : 234

Book Description
One of the great appeals of Extremal Set Theory as a subject is that the statements are easily accessible without a lot of mathematical background, yet the proofs and ideas have applications in a wide range of fields including combinatorics, number theory, and probability theory. Written by two of the leading researchers in the subject, this book is aimed at mathematically mature undergraduates, and highlights the elegance and power of this field of study. The first half of the book provides classic results with some new proofs including a complete proof of the Ahlswede-Khachatrian theorem as well as some recent progress on the Erdos matching conjecture. The second half presents some combinatorial structural results and linear algebra methods including the Deza-Erdos-Frankl theorem, application of Rodl's packing theorem, application of semidefinite programming, and very recent progress (obtained in 2016) on the Erdos-Szemeredi sunflower conjecture and capset problem. The book concludes with a collection of challenging open problems.

Extremal Problems for Finite Sets

Extremal Problems for Finite Sets PDF Author: Peter Frankl
Publisher: American Mathematical Soc.
ISBN: 1470440393
Category : Mathematics
Languages : en
Pages : 234

Book Description
One of the great appeals of Extremal Set Theory as a subject is that the statements are easily accessible without a lot of mathematical background, yet the proofs and ideas have applications in a wide range of fields including combinatorics, number theory, and probability theory. Written by two of the leading researchers in the subject, this book is aimed at mathematically mature undergraduates, and highlights the elegance and power of this field of study. The first half of the book provides classic results with some new proofs including a complete proof of the Ahlswede-Khachatrian theorem as well as some recent progress on the Erdos matching conjecture. The second half presents some combinatorial structural results and linear algebra methods including the Deza-Erdos-Frankl theorem, application of Rodl's packing theorem, application of semidefinite programming, and very recent progress (obtained in 2016) on the Erdos-Szemeredi sunflower conjecture and capset problem. The book concludes with a collection of challenging open problems.

Extremal Finite Set Theory

Extremal Finite Set Theory PDF Author: Daniel Gerbner
Publisher: CRC Press
ISBN: 0429804113
Category : Mathematics
Languages : en
Pages : 292

Book Description
Extremal Finite Set Theory surveys old and new results in the area of extremal set system theory. It presents an overview of the main techniques and tools (shifting, the cycle method, profile polytopes, incidence matrices, flag algebras, etc.) used in the different subtopics. The book focuses on the cardinality of a family of sets satisfying certain combinatorial properties. It covers recent progress in the subject of set systems and extremal combinatorics. Intended for graduate students, instructors teaching extremal combinatorics and researchers, this book serves as a sound introduction to the theory of extremal set systems. In each of the topics covered, the text introduces the basic tools used in the literature. Every chapter provides detailed proofs of the most important results and some of the most recent ones, while the proofs of some other theorems are posted as exercises with hints. Features: Presents the most basic theorems on extremal set systems Includes many proof techniques Contains recent developments The book’s contents are well suited to form the syllabus for an introductory course About the Authors: Dániel Gerbner is a researcher at the Alfréd Rényi Institute of Mathematics, Hungarian Academy of Sciences in Budapest, Hungary. He holds a Ph.D. from Eötvös Loránd University, Hungary and has contributed to numerous publications. His research interests are in extremal combinatorics and search theory. Balázs Patkós is also a researcher at the Alfréd Rényi Institute of Mathematics, Hungarian Academy of Sciences. He holds a Ph.D. from Central European University, Budapest and has authored several research papers. His research interests are in extremal and probabilistic combinatorics.

Combinatorics of Finite Sets

Combinatorics of Finite Sets PDF Author: Ian Anderson
Publisher: Courier Corporation
ISBN: 9780486422572
Category : Mathematics
Languages : en
Pages : 276

Book Description
Among other subjects explored are the Clements-Lindström extension of the Kruskal-Katona theorem to multisets and the Greene-Kleitmen result concerning k-saturated chain partitions of general partially ordered sets. Includes exercises and solutions.

Finitely Additive Measures and Relaxations of Extremal Problems

Finitely Additive Measures and Relaxations of Extremal Problems PDF Author: A.G. Chentsov
Publisher: Springer Science & Business Media
ISBN: 0306110385
Category : Language Arts & Disciplines
Languages : en
Pages : 261

Book Description
This monograph constructs correct extensions of extremal problems, including problems of multicriteria optimization as well as more general cone optimization problems. The author obtains common conditions of stability and asymptotic nonsensitivity of extremal problems under perturbation of a part of integral restrictions for finite and infinite systems of restrictions. Features include individual chapters on nonstandard approximation of finitely additive measures by indefinite integrals and constructions of attraction sets. Professor Chentsov illustrates abstract settings by providing examples of problems of impulse control, mathematical programming, and stochastic optimization.

Theory of Extremal Problems

Theory of Extremal Problems PDF Author:
Publisher: Elsevier
ISBN: 0080875270
Category : Mathematics
Languages : en
Pages : 473

Book Description
Theory of Extremal Problems

Extremal Combinatorics

Extremal Combinatorics PDF Author: Stasys Jukna
Publisher: Springer Science & Business Media
ISBN: 3662046504
Category : Computers
Languages : en
Pages : 389

Book Description
This is a concise, up-to-date introduction to extremal combinatorics for non-specialists. Strong emphasis is made on theorems with particularly elegant and informative proofs which may be called the gems of the theory. A wide spectrum of the most powerful combinatorial tools is presented, including methods of extremal set theory, the linear algebra method, the probabilistic method and fragments of Ramsey theory. A thorough discussion of recent applications to computer science illustrates the inherent usefulness of these methods.

Combinatorics

Combinatorics PDF Author: Béla Bollobás
Publisher: Cambridge University Press
ISBN: 9780521337038
Category : Mathematics
Languages : en
Pages : 196

Book Description
Combinatorics is a book whose main theme is the study of subsets of a finite set. It gives a thorough grounding in the theories of set systems and hypergraphs, while providing an introduction to matroids, designs, combinatorial probability and Ramsey theory for infinite sets. The gems of the theory are emphasized: beautiful results with elegant proofs. The book developed from a course at Louisiana State University and combines a careful presentation with the informal style of those lectures. It should be an ideal text for senior undergraduates and beginning graduates.

Unsolved Problems in Geometry

Unsolved Problems in Geometry PDF Author: Hallard T. Croft
Publisher: New York : Springer-Verlag
ISBN:
Category : Mathematics
Languages : en
Pages : 224

Book Description
For mathematicians or others who wish to keep up to date with the state of the art of geometrical problems, this collection of problems that are easy to state and understand but are as yet unsolved covers a wide variety of topics including convex sets, polyhedra, packing and covering, tiling, and combinatorial problems. Annotation copyrighted by Book News, Inc., Portland, OR.

Sperner Theory

Sperner Theory PDF Author: Konrad Engel
Publisher: Cambridge University Press
ISBN: 0521452066
Category : Mathematics
Languages : en
Pages : 430

Book Description
The starting point of this book is Sperner's theorem, which answers the question: What is the maximum possible size of a family of pairwise (with respect to inclusion) subsets of a finite set? This theorem stimulated the development of a fast growing theory dealing with external problems on finite sets and, more generally, on finite partially ordered sets. This book presents Sperner theory from a unified point of view, bringing combinatorial techniques together with methods from programming, linear algebra, Lie-algebra representations and eigenvalue methods, probability theory, and enumerative combinatorics. Researchers and graduate students in discrete mathematics, optimisation, algebra, probability theory, number theory, and geometry will find many powerful new methods arising from Sperner theory.

A Course in Combinatorics

A Course in Combinatorics PDF Author: J. H. van Lint
Publisher: Cambridge University Press
ISBN: 9780521006019
Category : Mathematics
Languages : en
Pages : 620

Book Description
This is the second edition of a popular book on combinatorics, a subject dealing with ways of arranging and distributing objects, and which involves ideas from geometry, algebra and analysis. The breadth of the theory is matched by that of its applications, which include topics as diverse as codes, circuit design and algorithm complexity. It has thus become essential for workers in many scientific fields to have some familiarity with the subject. The authors have tried to be as comprehensive as possible, dealing in a unified manner with, for example, graph theory, extremal problems, designs, colorings and codes. The depth and breadth of the coverage make the book a unique guide to the whole of the subject. The book is ideal for courses on combinatorical mathematics at the advanced undergraduate or beginning graduate level. Working mathematicians and scientists will also find it a valuable introduction and reference.