Author: Carlos Polanco
Publisher: Bentham Science Publishers
ISBN: 9814998796
Category : Mathematics
Languages : en
Pages : 141
Book Description
Exterior calculus is a branch of mathematics which involves differential geometry. In Exterior calculus the concept of differentiations is generalized to antisymmetric exterior derivatives and the notions of ordinary integration to differentiable manifolds of arbitrary dimensions. It therefore generalizes the fundamental theorem of calculus to Stokes' theorem. This textbook covers the fundamental requirements of exterior calculus in curricula for college students in mathematics and engineering programs. Chapters start from Heaviside-Gibbs algebra, and progress to different concepts in Grassman algebra. The final section of the book covers applications of exterior calculus with solutions. Readers will find a concise and clear study of vector calculus and differential geometry, along with several examples and exercises. The solutions to the exercises are also included at the end of the book. This is an ideal book for students with a basic background in mathematics who wish to learn about exterior calculus as part of their college curriculum and equip themselves with the knowledge to apply relevant theoretical concepts in practical situations.
Exterior Calculus: Theory and Cases
Author: Carlos Polanco
Publisher: Bentham Science Publishers
ISBN: 9814998796
Category : Mathematics
Languages : en
Pages : 141
Book Description
Exterior calculus is a branch of mathematics which involves differential geometry. In Exterior calculus the concept of differentiations is generalized to antisymmetric exterior derivatives and the notions of ordinary integration to differentiable manifolds of arbitrary dimensions. It therefore generalizes the fundamental theorem of calculus to Stokes' theorem. This textbook covers the fundamental requirements of exterior calculus in curricula for college students in mathematics and engineering programs. Chapters start from Heaviside-Gibbs algebra, and progress to different concepts in Grassman algebra. The final section of the book covers applications of exterior calculus with solutions. Readers will find a concise and clear study of vector calculus and differential geometry, along with several examples and exercises. The solutions to the exercises are also included at the end of the book. This is an ideal book for students with a basic background in mathematics who wish to learn about exterior calculus as part of their college curriculum and equip themselves with the knowledge to apply relevant theoretical concepts in practical situations.
Publisher: Bentham Science Publishers
ISBN: 9814998796
Category : Mathematics
Languages : en
Pages : 141
Book Description
Exterior calculus is a branch of mathematics which involves differential geometry. In Exterior calculus the concept of differentiations is generalized to antisymmetric exterior derivatives and the notions of ordinary integration to differentiable manifolds of arbitrary dimensions. It therefore generalizes the fundamental theorem of calculus to Stokes' theorem. This textbook covers the fundamental requirements of exterior calculus in curricula for college students in mathematics and engineering programs. Chapters start from Heaviside-Gibbs algebra, and progress to different concepts in Grassman algebra. The final section of the book covers applications of exterior calculus with solutions. Readers will find a concise and clear study of vector calculus and differential geometry, along with several examples and exercises. The solutions to the exercises are also included at the end of the book. This is an ideal book for students with a basic background in mathematics who wish to learn about exterior calculus as part of their college curriculum and equip themselves with the knowledge to apply relevant theoretical concepts in practical situations.
Applied Exterior Calculus
Author: Dominic G. B. Edelen
Publisher: Courier Corporation
ISBN: 0486438716
Category : Mathematics
Languages : en
Pages : 530
Book Description
This text begins with the essentials, advancing to applications and studies of physical disciplines, including classical and irreversible thermodynamics, electrodynamics, and the theory of gauge fields. Geared toward advanced undergraduates and graduate students, it develops most of the theory and requires only a familiarity with upper-division algebra and mathematical analysis. "Essential." — SciTech Book News. 1985 edition.
Publisher: Courier Corporation
ISBN: 0486438716
Category : Mathematics
Languages : en
Pages : 530
Book Description
This text begins with the essentials, advancing to applications and studies of physical disciplines, including classical and irreversible thermodynamics, electrodynamics, and the theory of gauge fields. Geared toward advanced undergraduates and graduate students, it develops most of the theory and requires only a familiarity with upper-division algebra and mathematical analysis. "Essential." — SciTech Book News. 1985 edition.
Advanced Calculus (Revised Edition)
Author: Lynn Harold Loomis
Publisher: World Scientific Publishing Company
ISBN: 9814583952
Category : Mathematics
Languages : en
Pages : 595
Book Description
An authorised reissue of the long out of print classic textbook, Advanced Calculus by the late Dr Lynn Loomis and Dr Shlomo Sternberg both of Harvard University has been a revered but hard to find textbook for the advanced calculus course for decades.This book is based on an honors course in advanced calculus that the authors gave in the 1960's. The foundational material, presented in the unstarred sections of Chapters 1 through 11, was normally covered, but different applications of this basic material were stressed from year to year, and the book therefore contains more material than was covered in any one year. It can accordingly be used (with omissions) as a text for a year's course in advanced calculus, or as a text for a three-semester introduction to analysis.The prerequisites are a good grounding in the calculus of one variable from a mathematically rigorous point of view, together with some acquaintance with linear algebra. The reader should be familiar with limit and continuity type arguments and have a certain amount of mathematical sophistication. As possible introductory texts, we mention Differential and Integral Calculus by R Courant, Calculus by T Apostol, Calculus by M Spivak, and Pure Mathematics by G Hardy. The reader should also have some experience with partial derivatives.In overall plan the book divides roughly into a first half which develops the calculus (principally the differential calculus) in the setting of normed vector spaces, and a second half which deals with the calculus of differentiable manifolds.
Publisher: World Scientific Publishing Company
ISBN: 9814583952
Category : Mathematics
Languages : en
Pages : 595
Book Description
An authorised reissue of the long out of print classic textbook, Advanced Calculus by the late Dr Lynn Loomis and Dr Shlomo Sternberg both of Harvard University has been a revered but hard to find textbook for the advanced calculus course for decades.This book is based on an honors course in advanced calculus that the authors gave in the 1960's. The foundational material, presented in the unstarred sections of Chapters 1 through 11, was normally covered, but different applications of this basic material were stressed from year to year, and the book therefore contains more material than was covered in any one year. It can accordingly be used (with omissions) as a text for a year's course in advanced calculus, or as a text for a three-semester introduction to analysis.The prerequisites are a good grounding in the calculus of one variable from a mathematically rigorous point of view, together with some acquaintance with linear algebra. The reader should be familiar with limit and continuity type arguments and have a certain amount of mathematical sophistication. As possible introductory texts, we mention Differential and Integral Calculus by R Courant, Calculus by T Apostol, Calculus by M Spivak, and Pure Mathematics by G Hardy. The reader should also have some experience with partial derivatives.In overall plan the book divides roughly into a first half which develops the calculus (principally the differential calculus) in the setting of normed vector spaces, and a second half which deals with the calculus of differentiable manifolds.
Finite Element Exterior Calculus
Author: Douglas N. Arnold
Publisher: SIAM
ISBN: 1611975530
Category : Mathematics
Languages : en
Pages : 126
Book Description
Computational methods to approximate the solution of differential equations play a crucial role in science, engineering, mathematics, and technology. The key processes that govern the physical world?wave propagation, thermodynamics, fluid flow, solid deformation, electricity and magnetism, quantum mechanics, general relativity, and many more?are described by differential equations. We depend on numerical methods for the ability to simulate, explore, predict, and control systems involving these processes. The finite element exterior calculus, or FEEC, is a powerful new theoretical approach to the design and understanding of numerical methods to solve partial differential equations (PDEs). The methods derived with FEEC preserve crucial geometric and topological structures underlying the equations and are among the most successful examples of structure-preserving methods in numerical PDEs. This volume aims to help numerical analysts master the fundamentals of FEEC, including the geometrical and functional analysis preliminaries, quickly and in one place. It is also accessible to mathematicians and students of mathematics from areas other than numerical analysis who are interested in understanding how techniques from geometry and topology play a role in numerical PDEs.
Publisher: SIAM
ISBN: 1611975530
Category : Mathematics
Languages : en
Pages : 126
Book Description
Computational methods to approximate the solution of differential equations play a crucial role in science, engineering, mathematics, and technology. The key processes that govern the physical world?wave propagation, thermodynamics, fluid flow, solid deformation, electricity and magnetism, quantum mechanics, general relativity, and many more?are described by differential equations. We depend on numerical methods for the ability to simulate, explore, predict, and control systems involving these processes. The finite element exterior calculus, or FEEC, is a powerful new theoretical approach to the design and understanding of numerical methods to solve partial differential equations (PDEs). The methods derived with FEEC preserve crucial geometric and topological structures underlying the equations and are among the most successful examples of structure-preserving methods in numerical PDEs. This volume aims to help numerical analysts master the fundamentals of FEEC, including the geometrical and functional analysis preliminaries, quickly and in one place. It is also accessible to mathematicians and students of mathematics from areas other than numerical analysis who are interested in understanding how techniques from geometry and topology play a role in numerical PDEs.
Calculus on Manifolds
Author: Michael Spivak
Publisher: Westview Press
ISBN: 9780805390216
Category : Science
Languages : en
Pages : 164
Book Description
This book uses elementary versions of modern methods found in sophisticated mathematics to discuss portions of "advanced calculus" in which the subtlety of the concepts and methods makes rigor difficult to attain at an elementary level.
Publisher: Westview Press
ISBN: 9780805390216
Category : Science
Languages : en
Pages : 164
Book Description
This book uses elementary versions of modern methods found in sophisticated mathematics to discuss portions of "advanced calculus" in which the subtlety of the concepts and methods makes rigor difficult to attain at an elementary level.
Exterior Differential Systems
Author: Robert L. Bryant
Publisher: Springer Science & Business Media
ISBN: 1461397146
Category : Mathematics
Languages : en
Pages : 483
Book Description
This book gives a treatment of exterior differential systems. It will in clude both the general theory and various applications. An exterior differential system is a system of equations on a manifold defined by equating to zero a number of exterior differential forms. When all the forms are linear, it is called a pfaffian system. Our object is to study its integral manifolds, i. e. , submanifolds satisfying all the equations of the system. A fundamental fact is that every equation implies the one obtained by exterior differentiation, so that the complete set of equations associated to an exterior differential system constitutes a differential ideal in the algebra of all smooth forms. Thus the theory is coordinate-free and computations typically have an algebraic character; however, even when coordinates are used in intermediate steps, the use of exterior algebra helps to efficiently guide the computations, and as a consequence the treatment adapts well to geometrical and physical problems. A system of partial differential equations, with any number of inde pendent and dependent variables and involving partial derivatives of any order, can be written as an exterior differential system. In this case we are interested in integral manifolds on which certain coordinates remain independent. The corresponding notion in exterior differential systems is the independence condition: certain pfaffian forms remain linearly indepen dent. Partial differential equations and exterior differential systems with an independence condition are essentially the same object.
Publisher: Springer Science & Business Media
ISBN: 1461397146
Category : Mathematics
Languages : en
Pages : 483
Book Description
This book gives a treatment of exterior differential systems. It will in clude both the general theory and various applications. An exterior differential system is a system of equations on a manifold defined by equating to zero a number of exterior differential forms. When all the forms are linear, it is called a pfaffian system. Our object is to study its integral manifolds, i. e. , submanifolds satisfying all the equations of the system. A fundamental fact is that every equation implies the one obtained by exterior differentiation, so that the complete set of equations associated to an exterior differential system constitutes a differential ideal in the algebra of all smooth forms. Thus the theory is coordinate-free and computations typically have an algebraic character; however, even when coordinates are used in intermediate steps, the use of exterior algebra helps to efficiently guide the computations, and as a consequence the treatment adapts well to geometrical and physical problems. A system of partial differential equations, with any number of inde pendent and dependent variables and involving partial derivatives of any order, can be written as an exterior differential system. In this case we are interested in integral manifolds on which certain coordinates remain independent. The corresponding notion in exterior differential systems is the independence condition: certain pfaffian forms remain linearly indepen dent. Partial differential equations and exterior differential systems with an independence condition are essentially the same object.
Exterior Differential Systems and the Calculus of Variations
Author: P.A. Griffiths
Publisher: Springer Science & Business Media
ISBN: 1461581664
Category : Mathematics
Languages : en
Pages : 348
Book Description
15 0. PRELIMINARIES a) Notations from Manifold Theory b) The Language of Jet Manifolds c) Frame Manifolds d) Differentia! Ideals e) Exterior Differential Systems EULER-LAGRANGE EQUATIONS FOR DIFFERENTIAL SYSTEMS ~liTH ONE I. 32 INDEPENDENT VARIABLE a) Setting up the Problem; Classical Examples b) Variational Equations for Integral Manifolds of Differential Systems c) Differential Systems in Good Form; the Derived Flag, Cauchy Characteristics, and Prolongation of Exterior Differential Systems d) Derivation of the Euler-Lagrange Equations; Examples e) The Euler-Lagrange Differential System; Non-Degenerate Variational Problems; Examples FIRST INTEGRALS OF THE EULER-LAGRANGE SYSTEM; NOETHER'S II. 1D7 THEOREM AND EXAMPLES a) First Integrals and Noether's Theorem; Some Classical Examples; Variational Problems Algebraically Integrable by Quadratures b) Investigation of the Euler-Lagrange System for Some Differential-Geometric Variational Pro~lems: 2 i) ( K ds for Plane Curves; i i) Affine Arclength; 2 iii) f K ds for Space Curves; and iv) Delauney Problem. II I. EULER EQUATIONS FOR VARIATIONAL PROBLEfiJS IN HOMOGENEOUS SPACES 161 a) Derivation of the Equations: i) Motivation; i i) Review of the Classical Case; iii) the Genera 1 Euler Equations 2 K /2 ds b) Examples: i) the Euler Equations Associated to f for lEn; but for Curves in i i) Some Problems as in i) sn; Non- Curves in iii) Euler Equations Associated to degenerate Ruled Surfaces IV.
Publisher: Springer Science & Business Media
ISBN: 1461581664
Category : Mathematics
Languages : en
Pages : 348
Book Description
15 0. PRELIMINARIES a) Notations from Manifold Theory b) The Language of Jet Manifolds c) Frame Manifolds d) Differentia! Ideals e) Exterior Differential Systems EULER-LAGRANGE EQUATIONS FOR DIFFERENTIAL SYSTEMS ~liTH ONE I. 32 INDEPENDENT VARIABLE a) Setting up the Problem; Classical Examples b) Variational Equations for Integral Manifolds of Differential Systems c) Differential Systems in Good Form; the Derived Flag, Cauchy Characteristics, and Prolongation of Exterior Differential Systems d) Derivation of the Euler-Lagrange Equations; Examples e) The Euler-Lagrange Differential System; Non-Degenerate Variational Problems; Examples FIRST INTEGRALS OF THE EULER-LAGRANGE SYSTEM; NOETHER'S II. 1D7 THEOREM AND EXAMPLES a) First Integrals and Noether's Theorem; Some Classical Examples; Variational Problems Algebraically Integrable by Quadratures b) Investigation of the Euler-Lagrange System for Some Differential-Geometric Variational Pro~lems: 2 i) ( K ds for Plane Curves; i i) Affine Arclength; 2 iii) f K ds for Space Curves; and iv) Delauney Problem. II I. EULER EQUATIONS FOR VARIATIONAL PROBLEfiJS IN HOMOGENEOUS SPACES 161 a) Derivation of the Equations: i) Motivation; i i) Review of the Classical Case; iii) the Genera 1 Euler Equations 2 K /2 ds b) Examples: i) the Euler Equations Associated to f for lEn; but for Curves in i i) Some Problems as in i) sn; Non- Curves in iii) Euler Equations Associated to degenerate Ruled Surfaces IV.
Discrete Calculus
Author: Leo J. Grady
Publisher: Springer Science & Business Media
ISBN: 1849962901
Category : Computers
Languages : en
Pages : 371
Book Description
This unique text brings together into a single framework current research in the three areas of discrete calculus, complex networks, and algorithmic content extraction. Many example applications from several fields of computational science are provided.
Publisher: Springer Science & Business Media
ISBN: 1849962901
Category : Computers
Languages : en
Pages : 371
Book Description
This unique text brings together into a single framework current research in the three areas of discrete calculus, complex networks, and algorithmic content extraction. Many example applications from several fields of computational science are provided.
Advanced Calculus: Fundamentals of Mathematics
Author: Carlos Polanco
Publisher: Bentham Science Publishers
ISBN: 9811415072
Category : Mathematics
Languages : en
Pages : 212
Book Description
Vector calculus is an essential mathematical tool for performing mathematical analysis of physical and natural phenomena. It is employed in advanced applications in the field of engineering and computer simulations. This textbook covers the fundamental requirements of vector calculus in curricula for college students in mathematics and engineering programs. Chapters start from the basics of vector algebra, real valued functions, different forms of integrals, geometric algebra and the various theorems relevant to vector calculus and differential forms. Readers will find a concise and clear study of vector calculus, along with several examples, exercises, and a case study in each chapter. The solutions to the exercises are also included at the end of the book. This is an ideal book for students with a basic background in mathematics who wish to learn about advanced calculus as part of their college curriculum and equip themselves with the knowledge to apply theoretical concepts in practical situations.
Publisher: Bentham Science Publishers
ISBN: 9811415072
Category : Mathematics
Languages : en
Pages : 212
Book Description
Vector calculus is an essential mathematical tool for performing mathematical analysis of physical and natural phenomena. It is employed in advanced applications in the field of engineering and computer simulations. This textbook covers the fundamental requirements of vector calculus in curricula for college students in mathematics and engineering programs. Chapters start from the basics of vector algebra, real valued functions, different forms of integrals, geometric algebra and the various theorems relevant to vector calculus and differential forms. Readers will find a concise and clear study of vector calculus, along with several examples, exercises, and a case study in each chapter. The solutions to the exercises are also included at the end of the book. This is an ideal book for students with a basic background in mathematics who wish to learn about advanced calculus as part of their college curriculum and equip themselves with the knowledge to apply theoretical concepts in practical situations.
Manifolds and Differential Geometry
Author: Jeffrey Marc Lee
Publisher: American Mathematical Soc.
ISBN: 0821848151
Category : Mathematics
Languages : en
Pages : 690
Book Description
Differential geometry began as the study of curves and surfaces using the methods of calculus. This book offers a graduate-level introduction to the tools and structures of modern differential geometry. It includes the topics usually found in a course on differentiable manifolds, such as vector bundles, tensors, and de Rham cohomology.
Publisher: American Mathematical Soc.
ISBN: 0821848151
Category : Mathematics
Languages : en
Pages : 690
Book Description
Differential geometry began as the study of curves and surfaces using the methods of calculus. This book offers a graduate-level introduction to the tools and structures of modern differential geometry. It includes the topics usually found in a course on differentiable manifolds, such as vector bundles, tensors, and de Rham cohomology.