Extensions of the Stability Theorem of the Minkowski Space in General Relativity PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Extensions of the Stability Theorem of the Minkowski Space in General Relativity PDF full book. Access full book title Extensions of the Stability Theorem of the Minkowski Space in General Relativity by Lydia Bieri . Download full books in PDF and EPUB format.

Extensions of the Stability Theorem of the Minkowski Space in General Relativity

Extensions of the Stability Theorem of the Minkowski Space in General Relativity PDF Author: Lydia Bieri
Publisher: American Mathematical Soc.
ISBN: 0821848232
Category : Mathematics
Languages : en
Pages : 523

Book Description
A famous result of Christodoulou and Klainerman is the global nonlinear stability of Minkowski spacetime. In this book, Bieri and Zipser provide two extensions to this result. In the first part, Bieri solves the Cauchy problem for the Einstein vacuum equations with more general, asymptotically flat initial data, and describes precisely the asymptotic behavior. In particular, she assumes less decay in the power of $r$ and one less derivative than in the Christodoulou-Klainerman result. She proves that in this case, too, the initial data, being globally close to the trivial data, yields a solution which is a complete spacetime, tending to the Minkowski spacetime at infinity along any geodesic. In contrast to the original situation, certain estimates in this proof are borderline in view of decay, indicating that the conditions in the main theorem on the decay at infinity on the initial data are sharp. In the second part, Zipser proves the existence of smooth, global solutions to the Einstein-Maxwell equations. A nontrivial solution of these equations is a curved spacetime with an electromagnetic field. To prove the existence of solutions to the Einstein-Maxwell equations, Zipser follows the argument and methodology introduced by Christodoulou and Klainerman. To generalize the original results, she needs to contend with the additional curvature terms that arise due to the presence of the electromagnetic field $F$; in her case the Ricci curvature of the spacetime is not identically zero but rather represented by a quadratic in the components of $F$. In particular the Ricci curvature is a constant multiple of the stress-energy tensor for $F$. Furthermore, the traceless part of the Riemann curvature tensor no longer satisfies the homogeneous Bianchi equations but rather inhomogeneous equations including components of the spacetime Ricci curvature. Therefore, the second part of this book focuses primarily on the derivation of estimates for the new terms that arise due to the presence of the electromagnetic field.

Extensions of the Stability Theorem of the Minkowski Space in General Relativity

Extensions of the Stability Theorem of the Minkowski Space in General Relativity PDF Author: Lydia Bieri
Publisher: American Mathematical Soc.
ISBN: 0821848232
Category : Mathematics
Languages : en
Pages : 523

Book Description
A famous result of Christodoulou and Klainerman is the global nonlinear stability of Minkowski spacetime. In this book, Bieri and Zipser provide two extensions to this result. In the first part, Bieri solves the Cauchy problem for the Einstein vacuum equations with more general, asymptotically flat initial data, and describes precisely the asymptotic behavior. In particular, she assumes less decay in the power of $r$ and one less derivative than in the Christodoulou-Klainerman result. She proves that in this case, too, the initial data, being globally close to the trivial data, yields a solution which is a complete spacetime, tending to the Minkowski spacetime at infinity along any geodesic. In contrast to the original situation, certain estimates in this proof are borderline in view of decay, indicating that the conditions in the main theorem on the decay at infinity on the initial data are sharp. In the second part, Zipser proves the existence of smooth, global solutions to the Einstein-Maxwell equations. A nontrivial solution of these equations is a curved spacetime with an electromagnetic field. To prove the existence of solutions to the Einstein-Maxwell equations, Zipser follows the argument and methodology introduced by Christodoulou and Klainerman. To generalize the original results, she needs to contend with the additional curvature terms that arise due to the presence of the electromagnetic field $F$; in her case the Ricci curvature of the spacetime is not identically zero but rather represented by a quadratic in the components of $F$. In particular the Ricci curvature is a constant multiple of the stress-energy tensor for $F$. Furthermore, the traceless part of the Riemann curvature tensor no longer satisfies the homogeneous Bianchi equations but rather inhomogeneous equations including components of the spacetime Ricci curvature. Therefore, the second part of this book focuses primarily on the derivation of estimates for the new terms that arise due to the presence of the electromagnetic field.

The Global Nonlinear Stability of the Minkowski Space (PMS-41)

The Global Nonlinear Stability of the Minkowski Space (PMS-41) PDF Author: Demetrios Christodoulou
Publisher: Princeton University Press
ISBN: 1400863171
Category : Mathematics
Languages : en
Pages : 525

Book Description
The aim of this work is to provide a proof of the nonlinear gravitational stability of the Minkowski space-time. More precisely, the book offers a constructive proof of global, smooth solutions to the Einstein Vacuum Equations, which look, in the large, like the Minkowski space-time. In particular, these solutions are free of black holes and singularities. The work contains a detailed description of the sense in which these solutions are close to the Minkowski space-time, in all directions. It thus provides the mathematical framework in which we can give a rigorous derivation of the laws of gravitation proposed by Bondi. Moreover, it establishes other important conclusions concerning the nonlinear character of gravitational radiation. The authors obtain their solutions as dynamic developments of all initial data sets, which are close, in a precise manner, to the flat initial data set corresponding to the Minkowski space-time. They thus establish the global dynamic stability of the latter. Originally published in 1994. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.

Theory, Numerics and Applications of Hyperbolic Problems II

Theory, Numerics and Applications of Hyperbolic Problems II PDF Author: Christian Klingenberg
Publisher: Springer
ISBN: 3319915487
Category : Mathematics
Languages : en
Pages : 698

Book Description
The second of two volumes, this edited proceedings book features research presented at the XVI International Conference on Hyperbolic Problems held in Aachen, Germany in summer 2016. It focuses on the theoretical, applied, and computational aspects of hyperbolic partial differential equations (systems of hyperbolic conservation laws, wave equations, etc.) and of related mathematical models (PDEs of mixed type, kinetic equations, nonlocal or/and discrete models) found in the field of applied sciences.

The Global Nonlinear Stability Of Minkowski Space For Self-gravitating Massive Fields

The Global Nonlinear Stability Of Minkowski Space For Self-gravitating Massive Fields PDF Author: Philippe G Lefloch
Publisher: World Scientific
ISBN: 9813230878
Category : Science
Languages : en
Pages : 187

Book Description
This book is devoted to the Einstein's field equations of general relativity for self-gravitating massive scalar fields. We formulate the initial value problem when the initial data set is a perturbation of an asymptotically flat, spacelike hypersurface in Minkowski spacetime. We then establish the existence of an Einstein development associated with this initial data set, which is proven to be an asymptotically flat and future geodesically complete spacetime.

General Relativity, Cosmology and Astrophysics

General Relativity, Cosmology and Astrophysics PDF Author: Jiří Bičák
Publisher: Springer
ISBN: 3319063499
Category : Science
Languages : en
Pages : 534

Book Description
The articles included in this Volume represent a broad and highly qualified view on the present state of general relativity, quantum gravity, and their cosmological and astrophysical implications. As such, it may serve as a valuable source of knowledge and inspiration for experts in these fields, as well as an advanced source of information for young researchers. The occasion to gather together so many leading experts in the field was to celebrate the centenary of Einstein's stay in Prague in 1911-1912. It was in fact during his stay in Prague that Einstein started in earnest to develop his ideas about general relativity that fully developed in his paper in 1915. Approaching soon the centenary of his famous paper, this volume offers a precious overview of the path done by the scientific community in this intriguing and vibrant field in the last century, defining the challenges of the next 100 years. The content is divided into four broad parts: (i) Gravity and Prague, (ii) Classical General Relativity, (iii) Cosmology and Quantum Gravity, and (iv) Numerical Relativity and Relativistic Astrophysics.

Accelerating Expansion

Accelerating Expansion PDF Author: Gordon Belot
Publisher: Oxford University Press
ISBN: 0192691562
Category : Science
Languages : en
Pages : 241

Book Description
Accelerating Expansion explores some of the philosophical implications of modern cosmology, focused on the significance that the discovery of the accelerating expansion of the Universe has for our understanding of time, geometry, and physics. The appearance of the cosmological constant in the equations of general relativity allows one to model universes in which space has an inherent tendency towards expansion. This constant, introduced by Einstein but subsequently abandoned by him, returned to centre stage with the discovery of the accelerating expansion. This pedagogically-oriented essay begins with a study of the most basic and elegant relativistic world that involves a positive cosmological constant, de Sitter spacetime. It then turns to the relatives of de Sitter spacetime that dominate modern relativistic cosmology. Some of the topics considered include: the nature of time and simultaneity in de Sitter worlds; the sense in which de Sitter spacetime is a powerful dynamical attractor; the limited extent to which observation can give us information about the topology of space in a world undergoing accelerated expansion; and cosmologists' favourite sceptical worry about the reliability of evidence and the possibility of knowledge, the problem of Boltzmann brains.

Einstein Equations: Physical and Mathematical Aspects of General Relativity

Einstein Equations: Physical and Mathematical Aspects of General Relativity PDF Author: Sergio Cacciatori
Publisher: Springer Nature
ISBN: 3030180611
Category : Science
Languages : en
Pages : 359

Book Description
This book is based on lectures given at the first edition of the Domoschool, the International Alpine School in Mathematics and Physics, held in Domodossola, Italy, in July 2018. It is divided into two parts. Part I consists of four sets of lecture notes. These are extended versions of lectures given at the Domoschool, written by well-known experts in mathematics and physics related to General Relativity. Part II collects talks by selected participants, focusing on research related to General Relativity.

Partial Differential Equations III

Partial Differential Equations III PDF Author: Michael E. Taylor
Publisher: Springer Nature
ISBN: 3031339282
Category : Mathematics
Languages : en
Pages : 774

Book Description
The third of three volumes on partial differential equations, this is devoted to nonlinear PDE. It treats a number of equations of classical continuum mechanics, including relativistic versions, as well as various equations arising in differential geometry, such as in the study of minimal surfaces, isometric imbedding, conformal deformation, harmonic maps, and prescribed Gauss curvature. In addition, some nonlinear diffusion problems are studied. It also introduces such analytical tools as the theory of L^p Sobolev spaces, Holder spaces, Hardy spaces, and Morrey spaces, and also a development of Calderon-Zygmund theory and paradifferential operator calculus. The book is targeted at graduate students in mathematics and at professional mathematicians with an interest in partial differential equations, mathematical physics, differential geometry, harmonic analysis, and complex analysis. The third edition further expands the material by incorporating new theorems and applications throughout the book, and by deepening connections and relating concepts across chapters. It includes new sections on rigid body motion, on probabilistic results related to random walks, on aspects of operator theory related to quantum mechanics, on overdetermined systems, and on the Euler equation for incompressible fluids. The appendices have also been updated with additional results, ranging from weak convergence of measures to the curvature of Kahler manifolds. Michael E. Taylor is a Professor of Mathematics at the University of North Carolina, Chapel Hill, NC. Review of first edition: “These volumes will be read by several generations of readers eager to learn the modern theory of partial differential equations of mathematical physics and the analysis in which this theory is rooted.” (Peter Lax, SIAM review, June 1998)

Geometric Relativity

Geometric Relativity PDF Author: Dan A. Lee
Publisher: American Mathematical Society
ISBN: 1470466236
Category : Mathematics
Languages : en
Pages : 377

Book Description
Many problems in general relativity are essentially geometric in nature, in the sense that they can be understood in terms of Riemannian geometry and partial differential equations. This book is centered around the study of mass in general relativity using the techniques of geometric analysis. Specifically, it provides a comprehensive treatment of the positive mass theorem and closely related results, such as the Penrose inequality, drawing on a variety of tools used in this area of research, including minimal hypersurfaces, conformal geometry, inverse mean curvature flow, conformal flow, spinors and the Dirac operator, marginally outer trapped surfaces, and density theorems. This is the first time these topics have been gathered into a single place and presented with an advanced graduate student audience in mind; several dozen exercises are also included. The main prerequisite for this book is a working understanding of Riemannian geometry and basic knowledge of elliptic linear partial differential equations, with only minimal prior knowledge of physics required. The second part of the book includes a short crash course on general relativity, which provides background for the study of asymptotically flat initial data sets satisfying the dominant energy condition.

Developments in Lorentzian Geometry

Developments in Lorentzian Geometry PDF Author: Alma L. Albujer
Publisher: Springer Nature
ISBN: 3031053796
Category : Mathematics
Languages : en
Pages : 323

Book Description
This proceedings volume gathers selected, revised papers presented at the X International Meeting on Lorentzian Geometry (GeLoCor 2021), virtually held at the University of Córdoba, Spain, on February 1-5, 2021. It includes surveys describing the state-of-the-art in specific areas, and a selection of the most relevant results presented at the conference. Taken together, the papers offer an invaluable introduction to key topics discussed at the conference and an overview of the main techniques in use today. This volume also gathers extended revisions of key studies in this field. Bringing new results and examples, these unique contributions offer new perspectives to the original problems and, in most cases, extend and reinforce the robustness of previous findings. Hosted every two years since 2001, the International Meeting on Lorentzian Geometry has become one of the main events bringing together the leading experts on Lorentzian geometry. In this volume, the reader will find studies on spatial and null hypersurfaces, low regularity in general relativity, conformal structures, Lorentz-Finsler spacetimes, and more. Given its scope, the book will be of interest to both young and experienced mathematicians and physicists whose research involves general relativity and semi-Riemannian geometry.