Author: Igor A. Balagansky
Publisher: John Wiley & Sons
ISBN: 1119525446
Category : Science
Languages : en
Pages : 224
Book Description
Describes in one volume the data received during experiments on detonation in high explosive charges This book brings together, in one volume, information normally covered in a series of journal articles on high explosive detonation tests, so that developers can create new explosive technologies. It focuses on the charges that contain inert elements made of materials in which a sound velocity is significantly higher than a detonation velocity. It also summarizes the results of experimental, numerical, and theoretical investigations of explosion systems, which contain high modulus ceramic components. The phenomena occurring in such systems are described in detail: desensitization of high explosives, nonstationary detonation processes, energy focusing, and Mach stems formation. Formation of hypersonic flows of ceramic particles arising due to explosive collapse of ceramic tubes is another example of the issues discussed. Explosion Systems with Inert High Modulus Components: Increasing the Efficiency of Blast Technologies and Their Applications also looks at the design of explosion protective structures based on high modulus ceramic materials. The structural transformations, caused in metallic materials by the energy focusing, or by the impact of hypersonic ceramic jets are also discussed. These transformations include, but not limited to adiabatic shear banding, phase transformations, mechanical twinning, melting, boiling, and even evaporation of the impacted substrates. Specifically discusses in one volume the explosions involved with inert high modules components normally scattered over numerous journal articles Covers methods to increase energy output of a weak explosive by encasing it in a higher explosive Discusses the specifics of explosive systems containing high modulus inert elements Details the process of detonation and related phenomena, as well as the design of novel highly performant explosive systems Describes the transformation in materials impacted due to explosion in such systems Explosion Systems with Inert High Modulus Components will be of great interest to specialists working in fields of energy of the explosion and explosion safety as well as university staff, students, and postgraduate students studying explosion phenomena, explosive technologies, explosion safety, and materials science.
Explosion Systems with Inert High-Modulus Components
Author: Igor A. Balagansky
Publisher: John Wiley & Sons
ISBN: 1119525446
Category : Science
Languages : en
Pages : 224
Book Description
Describes in one volume the data received during experiments on detonation in high explosive charges This book brings together, in one volume, information normally covered in a series of journal articles on high explosive detonation tests, so that developers can create new explosive technologies. It focuses on the charges that contain inert elements made of materials in which a sound velocity is significantly higher than a detonation velocity. It also summarizes the results of experimental, numerical, and theoretical investigations of explosion systems, which contain high modulus ceramic components. The phenomena occurring in such systems are described in detail: desensitization of high explosives, nonstationary detonation processes, energy focusing, and Mach stems formation. Formation of hypersonic flows of ceramic particles arising due to explosive collapse of ceramic tubes is another example of the issues discussed. Explosion Systems with Inert High Modulus Components: Increasing the Efficiency of Blast Technologies and Their Applications also looks at the design of explosion protective structures based on high modulus ceramic materials. The structural transformations, caused in metallic materials by the energy focusing, or by the impact of hypersonic ceramic jets are also discussed. These transformations include, but not limited to adiabatic shear banding, phase transformations, mechanical twinning, melting, boiling, and even evaporation of the impacted substrates. Specifically discusses in one volume the explosions involved with inert high modules components normally scattered over numerous journal articles Covers methods to increase energy output of a weak explosive by encasing it in a higher explosive Discusses the specifics of explosive systems containing high modulus inert elements Details the process of detonation and related phenomena, as well as the design of novel highly performant explosive systems Describes the transformation in materials impacted due to explosion in such systems Explosion Systems with Inert High Modulus Components will be of great interest to specialists working in fields of energy of the explosion and explosion safety as well as university staff, students, and postgraduate students studying explosion phenomena, explosive technologies, explosion safety, and materials science.
Publisher: John Wiley & Sons
ISBN: 1119525446
Category : Science
Languages : en
Pages : 224
Book Description
Describes in one volume the data received during experiments on detonation in high explosive charges This book brings together, in one volume, information normally covered in a series of journal articles on high explosive detonation tests, so that developers can create new explosive technologies. It focuses on the charges that contain inert elements made of materials in which a sound velocity is significantly higher than a detonation velocity. It also summarizes the results of experimental, numerical, and theoretical investigations of explosion systems, which contain high modulus ceramic components. The phenomena occurring in such systems are described in detail: desensitization of high explosives, nonstationary detonation processes, energy focusing, and Mach stems formation. Formation of hypersonic flows of ceramic particles arising due to explosive collapse of ceramic tubes is another example of the issues discussed. Explosion Systems with Inert High Modulus Components: Increasing the Efficiency of Blast Technologies and Their Applications also looks at the design of explosion protective structures based on high modulus ceramic materials. The structural transformations, caused in metallic materials by the energy focusing, or by the impact of hypersonic ceramic jets are also discussed. These transformations include, but not limited to adiabatic shear banding, phase transformations, mechanical twinning, melting, boiling, and even evaporation of the impacted substrates. Specifically discusses in one volume the explosions involved with inert high modules components normally scattered over numerous journal articles Covers methods to increase energy output of a weak explosive by encasing it in a higher explosive Discusses the specifics of explosive systems containing high modulus inert elements Details the process of detonation and related phenomena, as well as the design of novel highly performant explosive systems Describes the transformation in materials impacted due to explosion in such systems Explosion Systems with Inert High Modulus Components will be of great interest to specialists working in fields of energy of the explosion and explosion safety as well as university staff, students, and postgraduate students studying explosion phenomena, explosive technologies, explosion safety, and materials science.
Damaging Effects of Weapons and Ammunition
Author: Igor A. Balagansky
Publisher: John Wiley & Sons
ISBN: 1119779553
Category : Science
Languages : en
Pages : 356
Book Description
Comprehensive coverage of weapon damage effects on a variety of objects Damaging Effects of Weapons and Ammunition delivers a thorough exploration of a range of issues related to the effects of ammunition and weapons. The book includes coverage of the basic concepts of the theory of efficiency and the physical foundations of the functional and damaging effects of fragments, shaped charges, high-explosive and penetrating weapons. The author discusses the calculation formulas used to evaluation the parameters of damage fields and their interaction with various objects. Additionally, the book expands on the damage criteria of weapons, the characteristics of the vulnerability of objects with respect to a variety of damaging factors, dependencies for assessing safe distances, and the resistance of various structures to the effects of explosion and impact. Damaging Effects of Weapons and Ammunition also offers: Detailed calculation methods indicating areas of application and the necessary units of used quantities Extensive examples of classic designs of ammunition from around the world Discussions of the characterization of various types of ammunition, including high-explosive, fragment, penetrative, and shaped charges A chapter on the numerical simulation of high-speed processes Perfect for technical specialists working in the fields of explosion safety and explosives, Damaging Effects of Weapons and Ammunition also belongs in the libraries of researchers and students studying explosion phenomena, explosive technologies, explosion safety, and materials science.
Publisher: John Wiley & Sons
ISBN: 1119779553
Category : Science
Languages : en
Pages : 356
Book Description
Comprehensive coverage of weapon damage effects on a variety of objects Damaging Effects of Weapons and Ammunition delivers a thorough exploration of a range of issues related to the effects of ammunition and weapons. The book includes coverage of the basic concepts of the theory of efficiency and the physical foundations of the functional and damaging effects of fragments, shaped charges, high-explosive and penetrating weapons. The author discusses the calculation formulas used to evaluation the parameters of damage fields and their interaction with various objects. Additionally, the book expands on the damage criteria of weapons, the characteristics of the vulnerability of objects with respect to a variety of damaging factors, dependencies for assessing safe distances, and the resistance of various structures to the effects of explosion and impact. Damaging Effects of Weapons and Ammunition also offers: Detailed calculation methods indicating areas of application and the necessary units of used quantities Extensive examples of classic designs of ammunition from around the world Discussions of the characterization of various types of ammunition, including high-explosive, fragment, penetrative, and shaped charges A chapter on the numerical simulation of high-speed processes Perfect for technical specialists working in the fields of explosion safety and explosives, Damaging Effects of Weapons and Ammunition also belongs in the libraries of researchers and students studying explosion phenomena, explosive technologies, explosion safety, and materials science.
Explosion Systems with Inert High-Modulus Components
Author: Igor A. Balagansky
Publisher: John Wiley & Sons
ISBN: 111952539X
Category : Science
Languages : en
Pages : 262
Book Description
Describes in one volume the data received during experiments on detonation in high explosive charges This book brings together, in one volume, information normally covered in a series of journal articles on high explosive detonation tests, so that developers can create new explosive technologies. It focuses on the charges that contain inert elements made of materials in which a sound velocity is significantly higher than a detonation velocity. It also summarizes the results of experimental, numerical, and theoretical investigations of explosion systems, which contain high modulus ceramic components. The phenomena occurring in such systems are described in detail: desensitization of high explosives, nonstationary detonation processes, energy focusing, and Mach stems formation. Formation of hypersonic flows of ceramic particles arising due to explosive collapse of ceramic tubes is another example of the issues discussed. Explosion Systems with Inert High Modulus Components: Increasing the Efficiency of Blast Technologies and Their Applications also looks at the design of explosion protective structures based on high modulus ceramic materials. The structural transformations, caused in metallic materials by the energy focusing, or by the impact of hypersonic ceramic jets are also discussed. These transformations include, but not limited to adiabatic shear banding, phase transformations, mechanical twinning, melting, boiling, and even evaporation of the impacted substrates. Specifically discusses in one volume the explosions involved with inert high modules components normally scattered over numerous journal articles Covers methods to increase energy output of a weak explosive by encasing it in a higher explosive Discusses the specifics of explosive systems containing high modulus inert elements Details the process of detonation and related phenomena, as well as the design of novel highly performant explosive systems Describes the transformation in materials impacted due to explosion in such systems Explosion Systems with Inert High Modulus Components will be of great interest to specialists working in fields of energy of the explosion and explosion safety as well as university staff, students, and postgraduate students studying explosion phenomena, explosive technologies, explosion safety, and materials science.
Publisher: John Wiley & Sons
ISBN: 111952539X
Category : Science
Languages : en
Pages : 262
Book Description
Describes in one volume the data received during experiments on detonation in high explosive charges This book brings together, in one volume, information normally covered in a series of journal articles on high explosive detonation tests, so that developers can create new explosive technologies. It focuses on the charges that contain inert elements made of materials in which a sound velocity is significantly higher than a detonation velocity. It also summarizes the results of experimental, numerical, and theoretical investigations of explosion systems, which contain high modulus ceramic components. The phenomena occurring in such systems are described in detail: desensitization of high explosives, nonstationary detonation processes, energy focusing, and Mach stems formation. Formation of hypersonic flows of ceramic particles arising due to explosive collapse of ceramic tubes is another example of the issues discussed. Explosion Systems with Inert High Modulus Components: Increasing the Efficiency of Blast Technologies and Their Applications also looks at the design of explosion protective structures based on high modulus ceramic materials. The structural transformations, caused in metallic materials by the energy focusing, or by the impact of hypersonic ceramic jets are also discussed. These transformations include, but not limited to adiabatic shear banding, phase transformations, mechanical twinning, melting, boiling, and even evaporation of the impacted substrates. Specifically discusses in one volume the explosions involved with inert high modules components normally scattered over numerous journal articles Covers methods to increase energy output of a weak explosive by encasing it in a higher explosive Discusses the specifics of explosive systems containing high modulus inert elements Details the process of detonation and related phenomena, as well as the design of novel highly performant explosive systems Describes the transformation in materials impacted due to explosion in such systems Explosion Systems with Inert High Modulus Components will be of great interest to specialists working in fields of energy of the explosion and explosion safety as well as university staff, students, and postgraduate students studying explosion phenomena, explosive technologies, explosion safety, and materials science.
Czechoslovak Heavy Industry
Materials Science and Metallurgical Technology II
Author: Andrey A. Radionov
Publisher: Trans Tech Publications Ltd
ISBN: 303573576X
Category : Technology & Engineering
Languages : en
Pages : 874
Book Description
International Russian Conference on Materials Science and Metallurgical Technology (RusMetalCon 2019) Selected, peer reviewed papers from the International Russian Conference on Materials Science and Metallurgical Technology (RusMetalCon-2019), October 1-4, 2019, Chelyabinsk, Russian Federation
Publisher: Trans Tech Publications Ltd
ISBN: 303573576X
Category : Technology & Engineering
Languages : en
Pages : 874
Book Description
International Russian Conference on Materials Science and Metallurgical Technology (RusMetalCon 2019) Selected, peer reviewed papers from the International Russian Conference on Materials Science and Metallurgical Technology (RusMetalCon-2019), October 1-4, 2019, Chelyabinsk, Russian Federation
Government Reports Index
Author:
Publisher:
ISBN:
Category : Government publications
Languages : en
Pages : 908
Book Description
Publisher:
ISBN:
Category : Government publications
Languages : en
Pages : 908
Book Description
Government Reports Annual Index
Author:
Publisher:
ISBN:
Category : Government reports announcements & index
Languages : en
Pages : 828
Book Description
Publisher:
ISBN:
Category : Government reports announcements & index
Languages : en
Pages : 828
Book Description
U.S. Government Research and Development Reports Index
Author:
Publisher:
ISBN:
Category : Nuclear science abstracts
Languages : en
Pages : 1492
Book Description
Publisher:
ISBN:
Category : Nuclear science abstracts
Languages : en
Pages : 1492
Book Description