Author: Department of Health and Human Services
Publisher: CreateSpace
ISBN: 9781493566150
Category : Technology & Engineering
Languages : en
Pages : 116
Book Description
The National Institute for Occupational Safety and Health (NIOSH) and the Mine Safety and Health Administration (MSHA) conducted joint research to evaluate explosion blast effects on typical U.S. mine ventilation stoppings in the NIOSH Pittsburgh Research Laboratory's (PRL) Lake Lynn Experimental Mine (LLEM). An innovative Australian-designed brattice stopping was also evaluated. After mine explosion accidents, MSHA conducts investigations to determine the cause(s) as a means to prevent future occurrences. As part of these postexplosion investigations, the condition of underground stoppings, including the debris from damaged stoppings, is documented as evidence of the approximate strength and the direction of the explosion forces. Permanent stoppings are used to control and direct the ventilation airflow through underground coal mines to dilute and render harmless methane, entrained coal dust, and other contaminants at the working face and other areas of the mine. 30 CFR 75.333 requires that permanent stoppings be built and maintained between intake and return air courses beginning at the third connecting crosscut outby the working face and to separate other air courses and direct air as specified. To perform the intended function and meet the requirements of 30 CFR 75.333, permanent stoppings are to be constructed in a traditionally accepted method and of materials that have been demonstrated to perform adequately or in a method and of materials that have been tested and shown to have a minimum strength equal to or greater than the traditionally accepted in-mine controls. A few examples of traditionally accepted [61 Fed. Reg. 9764 (1996)] stopping construction methods are as follows: (1) 8-in (20-cm) and 6-in (15-cm) concrete block (both hollow-core and solid) with mortared joints, (2) 8-in (20-cm) and 6-in (15-cm) concrete blocks, dry-stacked and coated on one or both sides with a strength-enhancing sealant suitable for dry-stacked stoppings, and (3) steel stoppings (minimum 20-gauge) with seams and perimeter sealed with a suitable mine sealant. Unlike mine ventilation seal structures that are commonly used to isolate unused sections of the mine, stoppings are not intended to withstand explosion overpressures. Unfortunately, mine explosions do occur. Depending on the location and severity, explosions can result in fatalities and injuries to underground mining personnel and cause considerable underground damage to equipment and structures. In the mine explosions in Alabama in 2001 and West Virginia in 2006, ventilation stoppings were destroyed. Mine Safety and Health Administration (MSHA) personnel conduct investigations into these types of explosion accidents to determine the root cause(s) as a means to prevent future occurrences. As part of postexplosion investigations, the location and condition of underground ventilation structures and debris are mapped. This information helps the investigators determine the strength and the direction of the forces of the explosion.
Explosion Effects on Mine Ventilation Stoppings
Author: Department of Health and Human Services
Publisher: CreateSpace
ISBN: 9781493566150
Category : Technology & Engineering
Languages : en
Pages : 116
Book Description
The National Institute for Occupational Safety and Health (NIOSH) and the Mine Safety and Health Administration (MSHA) conducted joint research to evaluate explosion blast effects on typical U.S. mine ventilation stoppings in the NIOSH Pittsburgh Research Laboratory's (PRL) Lake Lynn Experimental Mine (LLEM). An innovative Australian-designed brattice stopping was also evaluated. After mine explosion accidents, MSHA conducts investigations to determine the cause(s) as a means to prevent future occurrences. As part of these postexplosion investigations, the condition of underground stoppings, including the debris from damaged stoppings, is documented as evidence of the approximate strength and the direction of the explosion forces. Permanent stoppings are used to control and direct the ventilation airflow through underground coal mines to dilute and render harmless methane, entrained coal dust, and other contaminants at the working face and other areas of the mine. 30 CFR 75.333 requires that permanent stoppings be built and maintained between intake and return air courses beginning at the third connecting crosscut outby the working face and to separate other air courses and direct air as specified. To perform the intended function and meet the requirements of 30 CFR 75.333, permanent stoppings are to be constructed in a traditionally accepted method and of materials that have been demonstrated to perform adequately or in a method and of materials that have been tested and shown to have a minimum strength equal to or greater than the traditionally accepted in-mine controls. A few examples of traditionally accepted [61 Fed. Reg. 9764 (1996)] stopping construction methods are as follows: (1) 8-in (20-cm) and 6-in (15-cm) concrete block (both hollow-core and solid) with mortared joints, (2) 8-in (20-cm) and 6-in (15-cm) concrete blocks, dry-stacked and coated on one or both sides with a strength-enhancing sealant suitable for dry-stacked stoppings, and (3) steel stoppings (minimum 20-gauge) with seams and perimeter sealed with a suitable mine sealant. Unlike mine ventilation seal structures that are commonly used to isolate unused sections of the mine, stoppings are not intended to withstand explosion overpressures. Unfortunately, mine explosions do occur. Depending on the location and severity, explosions can result in fatalities and injuries to underground mining personnel and cause considerable underground damage to equipment and structures. In the mine explosions in Alabama in 2001 and West Virginia in 2006, ventilation stoppings were destroyed. Mine Safety and Health Administration (MSHA) personnel conduct investigations into these types of explosion accidents to determine the root cause(s) as a means to prevent future occurrences. As part of postexplosion investigations, the location and condition of underground ventilation structures and debris are mapped. This information helps the investigators determine the strength and the direction of the forces of the explosion.
Publisher: CreateSpace
ISBN: 9781493566150
Category : Technology & Engineering
Languages : en
Pages : 116
Book Description
The National Institute for Occupational Safety and Health (NIOSH) and the Mine Safety and Health Administration (MSHA) conducted joint research to evaluate explosion blast effects on typical U.S. mine ventilation stoppings in the NIOSH Pittsburgh Research Laboratory's (PRL) Lake Lynn Experimental Mine (LLEM). An innovative Australian-designed brattice stopping was also evaluated. After mine explosion accidents, MSHA conducts investigations to determine the cause(s) as a means to prevent future occurrences. As part of these postexplosion investigations, the condition of underground stoppings, including the debris from damaged stoppings, is documented as evidence of the approximate strength and the direction of the explosion forces. Permanent stoppings are used to control and direct the ventilation airflow through underground coal mines to dilute and render harmless methane, entrained coal dust, and other contaminants at the working face and other areas of the mine. 30 CFR 75.333 requires that permanent stoppings be built and maintained between intake and return air courses beginning at the third connecting crosscut outby the working face and to separate other air courses and direct air as specified. To perform the intended function and meet the requirements of 30 CFR 75.333, permanent stoppings are to be constructed in a traditionally accepted method and of materials that have been demonstrated to perform adequately or in a method and of materials that have been tested and shown to have a minimum strength equal to or greater than the traditionally accepted in-mine controls. A few examples of traditionally accepted [61 Fed. Reg. 9764 (1996)] stopping construction methods are as follows: (1) 8-in (20-cm) and 6-in (15-cm) concrete block (both hollow-core and solid) with mortared joints, (2) 8-in (20-cm) and 6-in (15-cm) concrete blocks, dry-stacked and coated on one or both sides with a strength-enhancing sealant suitable for dry-stacked stoppings, and (3) steel stoppings (minimum 20-gauge) with seams and perimeter sealed with a suitable mine sealant. Unlike mine ventilation seal structures that are commonly used to isolate unused sections of the mine, stoppings are not intended to withstand explosion overpressures. Unfortunately, mine explosions do occur. Depending on the location and severity, explosions can result in fatalities and injuries to underground mining personnel and cause considerable underground damage to equipment and structures. In the mine explosions in Alabama in 2001 and West Virginia in 2006, ventilation stoppings were destroyed. Mine Safety and Health Administration (MSHA) personnel conduct investigations into these types of explosion accidents to determine the root cause(s) as a means to prevent future occurrences. As part of postexplosion investigations, the location and condition of underground ventilation structures and debris are mapped. This information helps the investigators determine the strength and the direction of the forces of the explosion.
Explosion Effects on Mine Ventilation Stoppings
Author: Eric S. Weiss
Publisher:
ISBN:
Category : Explosions
Languages : en
Pages : 0
Book Description
Publisher:
ISBN:
Category : Explosions
Languages : en
Pages : 0
Book Description
11th US/North American Mine Ventilation Symposium 2006
Author: Jan M. Mutmansky
Publisher: CRC Press
ISBN: 1439833397
Category : Technology & Engineering
Languages : en
Pages : 644
Book Description
This volume is the eleventh in a series which documents the technical papers of the mine ventilation symposium, which was initiated in 1982 by the Underground Ventilation Committee of the Society for Mining, Metallurgy, and Exploration, Inc. In more recent years, the event has expanded to include all of North America and is known as the US/North Am
Publisher: CRC Press
ISBN: 1439833397
Category : Technology & Engineering
Languages : en
Pages : 644
Book Description
This volume is the eleventh in a series which documents the technical papers of the mine ventilation symposium, which was initiated in 1982 by the Underground Ventilation Committee of the Society for Mining, Metallurgy, and Exploration, Inc. In more recent years, the event has expanded to include all of North America and is known as the US/North Am
Explosions in Underground Coal Mines
Author: Jianwei Cheng
Publisher: Springer
ISBN: 3319748939
Category : Science
Languages : en
Pages : 219
Book Description
This book addresses the hazard of gas explosions in sealed underground coal mines, and how the risk of explosion can be assessed, modeled, and mitigated. With this text, coal mine operators and managers will be able to identify the risks that lead to underground mine gas explosions, and implement practical strategies to optimize mining safety for workers. In six chapters, the book offers a framework for understanding the sealed coal mine atmosphere, the safety characteristics that are currently in place, and the guidelines to be followed by engineers to improve upon these characteristics. The first part of the book describes the importance and characteristics of underground gas mine explosions in a historical context with data showing the high number of fatalities from explosion incidents, and how risk has been mitigated in the past. Chapters also detail mathematical models and explosibility diagrams for determining and understanding the risk factors involved in mine explosions. Readers will also learn about safety operations, and assessments for the sealed mine atmosphere. With descriptions of chapter case studies, mining engineers and researchers will learn how to apply safety measures in underground coal mines to improve mining atmospheres and save lives.
Publisher: Springer
ISBN: 3319748939
Category : Science
Languages : en
Pages : 219
Book Description
This book addresses the hazard of gas explosions in sealed underground coal mines, and how the risk of explosion can be assessed, modeled, and mitigated. With this text, coal mine operators and managers will be able to identify the risks that lead to underground mine gas explosions, and implement practical strategies to optimize mining safety for workers. In six chapters, the book offers a framework for understanding the sealed coal mine atmosphere, the safety characteristics that are currently in place, and the guidelines to be followed by engineers to improve upon these characteristics. The first part of the book describes the importance and characteristics of underground gas mine explosions in a historical context with data showing the high number of fatalities from explosion incidents, and how risk has been mitigated in the past. Chapters also detail mathematical models and explosibility diagrams for determining and understanding the risk factors involved in mine explosions. Readers will also learn about safety operations, and assessments for the sealed mine atmosphere. With descriptions of chapter case studies, mining engineers and researchers will learn how to apply safety measures in underground coal mines to improve mining atmospheres and save lives.
Concrete Stoppings in Coal Mines for Resisting Explosions
Author: George Samuel Rice
Publisher:
ISBN:
Category : Coal mines and mining
Languages : en
Pages : 80
Book Description
Publisher:
ISBN:
Category : Coal mines and mining
Languages : en
Pages : 80
Book Description
Coal-dust Explosion Tests in the Experimental Mine 1913-1918, Inclusive
Author: George Samuel Rice
Publisher:
ISBN:
Category : Coal mines and mining
Languages : en
Pages : 714
Book Description
Publisher:
ISBN:
Category : Coal mines and mining
Languages : en
Pages : 714
Book Description
Extracting the Science
Author: Jürgen Brune
Publisher: SME
ISBN: 0873353226
Category : Technology & Engineering
Languages : en
Pages : 557
Book Description
These research papers also cover a spectrum of innovative technical solutions, including computer-controlled mining equipment, remote monitoring of air quality, and virtual reality training systems.
Publisher: SME
ISBN: 0873353226
Category : Technology & Engineering
Languages : en
Pages : 557
Book Description
These research papers also cover a spectrum of innovative technical solutions, including computer-controlled mining equipment, remote monitoring of air quality, and virtual reality training systems.
Explosions and Fires in Bituminous-coal Mines
Author: United States. Bureau of Mines
Publisher:
ISBN:
Category : Coal mine accidents
Languages : en
Pages : 116
Book Description
Publisher:
ISBN:
Category : Coal mine accidents
Languages : en
Pages : 116
Book Description
Technical Paper
Author: United States. Bureau of Mines
Publisher:
ISBN:
Category : Mines and mineral resources
Languages : en
Pages : 1134
Book Description
Publisher:
ISBN:
Category : Mines and mineral resources
Languages : en
Pages : 1134
Book Description
Oxygen Mine Rescue Apparatus and Physiological Effects on Users
Author: Yandell Henderson
Publisher:
ISBN:
Category : Coal mines and mining
Languages : en
Pages : 110
Book Description
Publisher:
ISBN:
Category : Coal mines and mining
Languages : en
Pages : 110
Book Description