Author: Crista Arangala
Publisher: CRC Press
ISBN: 1351664077
Category : Mathematics
Languages : en
Pages : 200
Book Description
Exploring Linear Algebra: Labs and Projects with MATLAB® is a hands-on lab manual that can be used by students and instructors in classrooms every day to guide the exploration of the theory and applications of linear algebra. For the most part, labs discussed in the book can be used individually or in a sequence. Each lab consists of an explanation of material with integrated exercises. Some labs are split into multiple subsections and thus exercises are separated by those subsections. The exercise sections integrate problems using Mathematica demonstrations (an online tool that can be used with a browser with Java capabilities) and MATLAB® coding. This allows students to discover the theory and applications of linear algebra in a meaningful and memorable way. Features: The book’s inquiry-based approach promotes student interaction Each chapter contains a project set which consists of application-driven projects emphasizing the chapter’s materials Adds a project component to any Linear Algebra course Explores many applications to a variety of fields that can promote research projects Employs MATLAB® to calculate and explore concepts and theories of linear algebra
Exploring Linear Algebra
Author: Crista Arangala
Publisher: CRC Press
ISBN: 1351664077
Category : Mathematics
Languages : en
Pages : 200
Book Description
Exploring Linear Algebra: Labs and Projects with MATLAB® is a hands-on lab manual that can be used by students and instructors in classrooms every day to guide the exploration of the theory and applications of linear algebra. For the most part, labs discussed in the book can be used individually or in a sequence. Each lab consists of an explanation of material with integrated exercises. Some labs are split into multiple subsections and thus exercises are separated by those subsections. The exercise sections integrate problems using Mathematica demonstrations (an online tool that can be used with a browser with Java capabilities) and MATLAB® coding. This allows students to discover the theory and applications of linear algebra in a meaningful and memorable way. Features: The book’s inquiry-based approach promotes student interaction Each chapter contains a project set which consists of application-driven projects emphasizing the chapter’s materials Adds a project component to any Linear Algebra course Explores many applications to a variety of fields that can promote research projects Employs MATLAB® to calculate and explore concepts and theories of linear algebra
Publisher: CRC Press
ISBN: 1351664077
Category : Mathematics
Languages : en
Pages : 200
Book Description
Exploring Linear Algebra: Labs and Projects with MATLAB® is a hands-on lab manual that can be used by students and instructors in classrooms every day to guide the exploration of the theory and applications of linear algebra. For the most part, labs discussed in the book can be used individually or in a sequence. Each lab consists of an explanation of material with integrated exercises. Some labs are split into multiple subsections and thus exercises are separated by those subsections. The exercise sections integrate problems using Mathematica demonstrations (an online tool that can be used with a browser with Java capabilities) and MATLAB® coding. This allows students to discover the theory and applications of linear algebra in a meaningful and memorable way. Features: The book’s inquiry-based approach promotes student interaction Each chapter contains a project set which consists of application-driven projects emphasizing the chapter’s materials Adds a project component to any Linear Algebra course Explores many applications to a variety of fields that can promote research projects Employs MATLAB® to calculate and explore concepts and theories of linear algebra
Exploring Linear Algebra
Author: Crista Arangala
Publisher: CRC Press
ISBN: 1351664085
Category : Mathematics
Languages : en
Pages : 146
Book Description
Exploring Linear Algebra: Labs and Projects with MATLAB® is a hands-on lab manual that can be used by students and instructors in classrooms every day to guide the exploration of the theory and applications of linear algebra. For the most part, labs discussed in the book can be used individually or in a sequence. Each lab consists of an explanation of material with integrated exercises. Some labs are split into multiple subsections and thus exercises are separated by those subsections. The exercise sections integrate problems using Mathematica demonstrations (an online tool that can be used with a browser with Java capabilities) and MATLAB® coding. This allows students to discover the theory and applications of linear algebra in a meaningful and memorable way. Features: The book’s inquiry-based approach promotes student interaction Each chapter contains a project set which consists of application-driven projects emphasizing the chapter’s materials Adds a project component to any Linear Algebra course Explores many applications to a variety of fields that can promote research projects Employs MATLAB® to calculate and explore concepts and theories of linear algebra
Publisher: CRC Press
ISBN: 1351664085
Category : Mathematics
Languages : en
Pages : 146
Book Description
Exploring Linear Algebra: Labs and Projects with MATLAB® is a hands-on lab manual that can be used by students and instructors in classrooms every day to guide the exploration of the theory and applications of linear algebra. For the most part, labs discussed in the book can be used individually or in a sequence. Each lab consists of an explanation of material with integrated exercises. Some labs are split into multiple subsections and thus exercises are separated by those subsections. The exercise sections integrate problems using Mathematica demonstrations (an online tool that can be used with a browser with Java capabilities) and MATLAB® coding. This allows students to discover the theory and applications of linear algebra in a meaningful and memorable way. Features: The book’s inquiry-based approach promotes student interaction Each chapter contains a project set which consists of application-driven projects emphasizing the chapter’s materials Adds a project component to any Linear Algebra course Explores many applications to a variety of fields that can promote research projects Employs MATLAB® to calculate and explore concepts and theories of linear algebra
Principles of Linear Algebra with Mathematica
Author: Kenneth M. Shiskowski
Publisher: John Wiley & Sons
ISBN: 1118627261
Category : Mathematics
Languages : en
Pages : 624
Book Description
A hands-on introduction to the theoretical and computational aspects of linear algebra using Mathematica® Many topics in linear algebra are simple, yet computationally intensive, and computer algebra systems such as Mathematica® are essential not only for learning to apply the concepts to computationally challenging problems, but also for visualizing many of the geometric aspects within this field of study. Principles of Linear Algebra with Mathematica uniquely bridges the gap between beginning linear algebra and computational linear algebra that is often encountered in applied settings, and the commands required to solve complex and computationally challenging problems using Mathematica are provided. The book begins with an introduction to the commands and programming guidelines for working with Mathematica. Next, the authors explore linear systems of equations and matrices, applications of linear systems and matrices, determinants, inverses, and Cramer's rule. Basic linear algebra topics, such as vectors, dot product, cross product, and vector projection are explored, as well as a unique variety of more advanced topics including rotations in space, 'rolling' a circle along a curve, and the TNB Frame. Subsequent chapters feature coverage of linear transformations from Rn to Rm, the geometry of linear and affine transformations, with an exploration of their effect on arclength, area, and volume, least squares fits, and pseudoinverses. Mathematica is used to enhance concepts and is seamlessly integrated throughout the book through symbolic manipulations, numerical computations, graphics in two and three dimensions, animations, and programming. Each section concludes with standard problems in addition to problems that were specifically designed to be solved with Mathematica, allowing readers to test their comprehension of the presented material. All related Mathematica code is available on a corresponding website, along with solutions to problems and additional topical resources. Extensively class-tested to ensure an accessible presentation, Principles of Linear Algebra with Mathematica is an excellent book for courses on linear algebra at the undergraduate level. The book is also an ideal reference for students and professionals who would like to gain a further understanding of the use of Mathematica to solve linear algebra problems.
Publisher: John Wiley & Sons
ISBN: 1118627261
Category : Mathematics
Languages : en
Pages : 624
Book Description
A hands-on introduction to the theoretical and computational aspects of linear algebra using Mathematica® Many topics in linear algebra are simple, yet computationally intensive, and computer algebra systems such as Mathematica® are essential not only for learning to apply the concepts to computationally challenging problems, but also for visualizing many of the geometric aspects within this field of study. Principles of Linear Algebra with Mathematica uniquely bridges the gap between beginning linear algebra and computational linear algebra that is often encountered in applied settings, and the commands required to solve complex and computationally challenging problems using Mathematica are provided. The book begins with an introduction to the commands and programming guidelines for working with Mathematica. Next, the authors explore linear systems of equations and matrices, applications of linear systems and matrices, determinants, inverses, and Cramer's rule. Basic linear algebra topics, such as vectors, dot product, cross product, and vector projection are explored, as well as a unique variety of more advanced topics including rotations in space, 'rolling' a circle along a curve, and the TNB Frame. Subsequent chapters feature coverage of linear transformations from Rn to Rm, the geometry of linear and affine transformations, with an exploration of their effect on arclength, area, and volume, least squares fits, and pseudoinverses. Mathematica is used to enhance concepts and is seamlessly integrated throughout the book through symbolic manipulations, numerical computations, graphics in two and three dimensions, animations, and programming. Each section concludes with standard problems in addition to problems that were specifically designed to be solved with Mathematica, allowing readers to test their comprehension of the presented material. All related Mathematica code is available on a corresponding website, along with solutions to problems and additional topical resources. Extensively class-tested to ensure an accessible presentation, Principles of Linear Algebra with Mathematica is an excellent book for courses on linear algebra at the undergraduate level. The book is also an ideal reference for students and professionals who would like to gain a further understanding of the use of Mathematica to solve linear algebra problems.
Exploring Abstract Algebra With Mathematica®
Author: Allen C. Hibbard
Publisher: Springer Science & Business Media
ISBN: 1461215307
Category : Mathematics
Languages : en
Pages : 476
Book Description
This upper-division laboratory supplement for courses in abstract algebra consists of several Mathematica packages programmed as a foundation for group and ring theory. Additionally, the "user's guide" illustrates the functionality of the underlying code, while the lab portion of the book reflects the contents of the Mathematica-based electronic notebooks. Students interact with both the printed and electronic versions of the material in the laboratory, and can look up details and reference information in the user's guide. Exercises occur in the stream of the text of the lab, which provides a context within which to answer, and the questions are designed to be either written into the electronic notebook, or on paper. The notebooks are available in both 2.2 and 3.0 versions of Mathematica, and run across all platforms for which Mathematica exits. A very timely and unique addition to the undergraduate abstract algebra curriculum, filling a tremendous void in the literature.
Publisher: Springer Science & Business Media
ISBN: 1461215307
Category : Mathematics
Languages : en
Pages : 476
Book Description
This upper-division laboratory supplement for courses in abstract algebra consists of several Mathematica packages programmed as a foundation for group and ring theory. Additionally, the "user's guide" illustrates the functionality of the underlying code, while the lab portion of the book reflects the contents of the Mathematica-based electronic notebooks. Students interact with both the printed and electronic versions of the material in the laboratory, and can look up details and reference information in the user's guide. Exercises occur in the stream of the text of the lab, which provides a context within which to answer, and the questions are designed to be either written into the electronic notebook, or on paper. The notebooks are available in both 2.2 and 3.0 versions of Mathematica, and run across all platforms for which Mathematica exits. A very timely and unique addition to the undergraduate abstract algebra curriculum, filling a tremendous void in the literature.
Elementary Linear Algebra
Author: Stephen Andrilli
Publisher: Academic Press
ISBN: 0080886256
Category : Mathematics
Languages : en
Pages : 773
Book Description
Elementary Linear Algebra develops and explains in careful detail the computational techniques and fundamental theoretical results central to a first course in linear algebra. This highly acclaimed text focuses on developing the abstract thinking essential for further mathematical study The authors give early, intensive attention to the skills necessary to make students comfortable with mathematical proofs. The text builds a gradual and smooth transition from computational results to general theory of abstract vector spaces. It also provides flexbile coverage of practical applications, exploring a comprehensive range of topics. Ancillary list:* Maple Algorithmic testing- Maple TA- www.maplesoft.com - Includes a wide variety of applications, technology tips and exercises, organized in chart format for easy reference - More than 310 numbered examples in the text at least one for each new concept or application - Exercise sets ordered by increasing difficulty, many with multiple parts for a total of more than 2135 questions - Provides an early introduction to eigenvalues/eigenvectors - A Student solutions manual, containing fully worked out solutions and instructors manual available
Publisher: Academic Press
ISBN: 0080886256
Category : Mathematics
Languages : en
Pages : 773
Book Description
Elementary Linear Algebra develops and explains in careful detail the computational techniques and fundamental theoretical results central to a first course in linear algebra. This highly acclaimed text focuses on developing the abstract thinking essential for further mathematical study The authors give early, intensive attention to the skills necessary to make students comfortable with mathematical proofs. The text builds a gradual and smooth transition from computational results to general theory of abstract vector spaces. It also provides flexbile coverage of practical applications, exploring a comprehensive range of topics. Ancillary list:* Maple Algorithmic testing- Maple TA- www.maplesoft.com - Includes a wide variety of applications, technology tips and exercises, organized in chart format for easy reference - More than 310 numbered examples in the text at least one for each new concept or application - Exercise sets ordered by increasing difficulty, many with multiple parts for a total of more than 2135 questions - Provides an early introduction to eigenvalues/eigenvectors - A Student solutions manual, containing fully worked out solutions and instructors manual available
Linear Algebra Done Right
Author: Sheldon Axler
Publisher: Springer Science & Business Media
ISBN: 9780387982595
Category : Mathematics
Languages : en
Pages : 276
Book Description
This text for a second course in linear algebra, aimed at math majors and graduates, adopts a novel approach by banishing determinants to the end of the book and focusing on understanding the structure of linear operators on vector spaces. The author has taken unusual care to motivate concepts and to simplify proofs. For example, the book presents - without having defined determinants - a clean proof that every linear operator on a finite-dimensional complex vector space has an eigenvalue. The book starts by discussing vector spaces, linear independence, span, basics, and dimension. Students are introduced to inner-product spaces in the first half of the book and shortly thereafter to the finite- dimensional spectral theorem. A variety of interesting exercises in each chapter helps students understand and manipulate the objects of linear algebra. This second edition features new chapters on diagonal matrices, on linear functionals and adjoints, and on the spectral theorem; some sections, such as those on self-adjoint and normal operators, have been entirely rewritten; and hundreds of minor improvements have been made throughout the text.
Publisher: Springer Science & Business Media
ISBN: 9780387982595
Category : Mathematics
Languages : en
Pages : 276
Book Description
This text for a second course in linear algebra, aimed at math majors and graduates, adopts a novel approach by banishing determinants to the end of the book and focusing on understanding the structure of linear operators on vector spaces. The author has taken unusual care to motivate concepts and to simplify proofs. For example, the book presents - without having defined determinants - a clean proof that every linear operator on a finite-dimensional complex vector space has an eigenvalue. The book starts by discussing vector spaces, linear independence, span, basics, and dimension. Students are introduced to inner-product spaces in the first half of the book and shortly thereafter to the finite- dimensional spectral theorem. A variety of interesting exercises in each chapter helps students understand and manipulate the objects of linear algebra. This second edition features new chapters on diagonal matrices, on linear functionals and adjoints, and on the spectral theorem; some sections, such as those on self-adjoint and normal operators, have been entirely rewritten; and hundreds of minor improvements have been made throughout the text.
The Linear Algebra Survival Guide
Author: Fred Szabo
Publisher: Academic Press
ISBN: 0124095313
Category : Mathematics
Languages : en
Pages : 441
Book Description
The Linear Algebra Survival Guide offers a concise introduction to the difficult core topics of linear algebra, guiding you through the powerful graphic displays and visualization of Mathematica that make the most abstract theories seem simple - allowing you to tackle realistic problems using simple mathematical manipulations. This resource is therefore a guide to learning the content of Mathematica in a practical way, enabling you to manipulate potential solutions/outcomes, and learn creatively. No starting knowledge of the Mathematica system is required to use the book. Desktop, laptop, web-based versions of Mathematica are available on all major platforms. Mathematica Online for tablet and smartphone systems are also under development and increases the reach of the guide as a general reference, teaching and learning tool. - Includes computational oriented information that complements the essential topics in linear algebra. - Presents core topics in a simple, straightforward way with examples for exploring computational illustrations, graphics, and displays using Mathematica. - Provides numerous examples of short code in the text, which can be modified for use with exercises to develop graphics displays for teaching, learning, and demonstrations.
Publisher: Academic Press
ISBN: 0124095313
Category : Mathematics
Languages : en
Pages : 441
Book Description
The Linear Algebra Survival Guide offers a concise introduction to the difficult core topics of linear algebra, guiding you through the powerful graphic displays and visualization of Mathematica that make the most abstract theories seem simple - allowing you to tackle realistic problems using simple mathematical manipulations. This resource is therefore a guide to learning the content of Mathematica in a practical way, enabling you to manipulate potential solutions/outcomes, and learn creatively. No starting knowledge of the Mathematica system is required to use the book. Desktop, laptop, web-based versions of Mathematica are available on all major platforms. Mathematica Online for tablet and smartphone systems are also under development and increases the reach of the guide as a general reference, teaching and learning tool. - Includes computational oriented information that complements the essential topics in linear algebra. - Presents core topics in a simple, straightforward way with examples for exploring computational illustrations, graphics, and displays using Mathematica. - Provides numerous examples of short code in the text, which can be modified for use with exercises to develop graphics displays for teaching, learning, and demonstrations.
Linear Algebra for the Young Mathematician
Author: Steven H. Weintraub
Publisher: American Mathematical Soc.
ISBN: 1470450844
Category : Education
Languages : en
Pages : 406
Book Description
Linear Algebra for the Young Mathematician is a careful, thorough, and rigorous introduction to linear algebra. It adopts a conceptual point of view, focusing on the notions of vector spaces and linear transformations, and it takes pains to provide proofs that bring out the essential ideas of the subject. It begins at the beginning, assuming no prior knowledge of the subject, but goes quite far, and it includes many topics not usually treated in introductory linear algebra texts, such as Jordan canonical form and the spectral theorem. While it concentrates on the finite-dimensional case, it treats the infinite-dimensional case as well. The book illustrates the centrality of linear algebra by providing numerous examples of its application within mathematics. It contains a wide variety of both conceptual and computational exercises at all levels, from the relatively straightforward to the quite challenging. Readers of this book will not only come away with the knowledge that the results of linear algebra are true, but also with a deep understanding of why they are true.
Publisher: American Mathematical Soc.
ISBN: 1470450844
Category : Education
Languages : en
Pages : 406
Book Description
Linear Algebra for the Young Mathematician is a careful, thorough, and rigorous introduction to linear algebra. It adopts a conceptual point of view, focusing on the notions of vector spaces and linear transformations, and it takes pains to provide proofs that bring out the essential ideas of the subject. It begins at the beginning, assuming no prior knowledge of the subject, but goes quite far, and it includes many topics not usually treated in introductory linear algebra texts, such as Jordan canonical form and the spectral theorem. While it concentrates on the finite-dimensional case, it treats the infinite-dimensional case as well. The book illustrates the centrality of linear algebra by providing numerous examples of its application within mathematics. It contains a wide variety of both conceptual and computational exercises at all levels, from the relatively straightforward to the quite challenging. Readers of this book will not only come away with the knowledge that the results of linear algebra are true, but also with a deep understanding of why they are true.
Grassmann Algebra Volume 1: Foundations
Author: John Browne
Publisher: John M Browne
ISBN: 1479197637
Category : Mathematics
Languages : en
Pages : 589
Book Description
Grassmann Algebra Volume 1: Foundations Exploring extended vector algebra with Mathematica Grassmann algebra extends vector algebra by introducing the exterior product to algebraicize the notion of linear dependence. With it, vectors may be extended to higher-grade entities: bivectors, trivectors, … multivectors. The extensive exterior product also has a regressive dual: the regressive product. The pair behaves a little like the Boolean duals of union and intersection. By interpreting one of the elements of the vector space as an origin point, points can be defined, and the exterior product can extend points into higher-grade located entities from which lines, planes and multiplanes can be defined. Theorems of Projective Geometry are simply formulae involving these entities and the dual products. By introducing the (orthogonal) complement operation, the scalar product of vectors may be extended to the interior product of multivectors, which in this more general case may no longer result in a scalar. The notion of the magnitude of vectors is extended to the magnitude of multivectors: for example, the magnitude of the exterior product of two vectors (a bivector) is the area of the parallelogram formed by them. To develop these foundational concepts, we need only consider entities which are the sums of elements of the same grade. This is the focus of this volume. But the entities of Grassmann algebra need not be of the same grade, and the possible product types need not be constricted to just the exterior, regressive and interior products. For example quaternion algebra is simply the Grassmann algebra of scalars and bivectors under a new product operation. Clifford, geometric and higher order hypercomplex algebras, for example the octonions, may be defined similarly. If to these we introduce Clifford's invention of a scalar which squares to zero, we can define entities (for example dual quaternions) with which we can perform elaborate transformations. Exploration of these entities, operations and algebras will be the focus of the volume to follow this. There is something fascinating about the beauty with which the mathematical structures that Hermann Grassmann discovered describe the physical world, and something also fascinating about how these beautiful structures have been largely lost to the mainstreams of mathematics and science. He wrote his seminal Ausdehnungslehre (Die Ausdehnungslehre. Vollständig und in strenger Form) in 1862. But it was not until the latter part of his life that he received any significant recognition for it, most notably by Gibbs and Clifford. In recent times David Hestenes' Geometric Algebra must be given the credit for much of the emerging awareness of Grassmann's innovation. In the hope that the book be accessible to scientists and engineers, students and professionals alike, the text attempts to avoid any terminology which does not make an essential contribution to an understanding of the basic concepts. Some familiarity with basic linear algebra may however be useful. The book is written using Mathematica, a powerful system for doing mathematics on a computer. This enables the theory to be cross-checked with computational explorations. However, a knowledge of Mathematica is not essential for an appreciation of Grassmann's beautiful ideas.
Publisher: John M Browne
ISBN: 1479197637
Category : Mathematics
Languages : en
Pages : 589
Book Description
Grassmann Algebra Volume 1: Foundations Exploring extended vector algebra with Mathematica Grassmann algebra extends vector algebra by introducing the exterior product to algebraicize the notion of linear dependence. With it, vectors may be extended to higher-grade entities: bivectors, trivectors, … multivectors. The extensive exterior product also has a regressive dual: the regressive product. The pair behaves a little like the Boolean duals of union and intersection. By interpreting one of the elements of the vector space as an origin point, points can be defined, and the exterior product can extend points into higher-grade located entities from which lines, planes and multiplanes can be defined. Theorems of Projective Geometry are simply formulae involving these entities and the dual products. By introducing the (orthogonal) complement operation, the scalar product of vectors may be extended to the interior product of multivectors, which in this more general case may no longer result in a scalar. The notion of the magnitude of vectors is extended to the magnitude of multivectors: for example, the magnitude of the exterior product of two vectors (a bivector) is the area of the parallelogram formed by them. To develop these foundational concepts, we need only consider entities which are the sums of elements of the same grade. This is the focus of this volume. But the entities of Grassmann algebra need not be of the same grade, and the possible product types need not be constricted to just the exterior, regressive and interior products. For example quaternion algebra is simply the Grassmann algebra of scalars and bivectors under a new product operation. Clifford, geometric and higher order hypercomplex algebras, for example the octonions, may be defined similarly. If to these we introduce Clifford's invention of a scalar which squares to zero, we can define entities (for example dual quaternions) with which we can perform elaborate transformations. Exploration of these entities, operations and algebras will be the focus of the volume to follow this. There is something fascinating about the beauty with which the mathematical structures that Hermann Grassmann discovered describe the physical world, and something also fascinating about how these beautiful structures have been largely lost to the mainstreams of mathematics and science. He wrote his seminal Ausdehnungslehre (Die Ausdehnungslehre. Vollständig und in strenger Form) in 1862. But it was not until the latter part of his life that he received any significant recognition for it, most notably by Gibbs and Clifford. In recent times David Hestenes' Geometric Algebra must be given the credit for much of the emerging awareness of Grassmann's innovation. In the hope that the book be accessible to scientists and engineers, students and professionals alike, the text attempts to avoid any terminology which does not make an essential contribution to an understanding of the basic concepts. Some familiarity with basic linear algebra may however be useful. The book is written using Mathematica, a powerful system for doing mathematics on a computer. This enables the theory to be cross-checked with computational explorations. However, a knowledge of Mathematica is not essential for an appreciation of Grassmann's beautiful ideas.
Linear Algebra: Gateway to Mathematics: Second Edition
Author: Robert Messer
Publisher: American Mathematical Soc.
ISBN: 1470462958
Category : Education
Languages : en
Pages : 420
Book Description
Linear Algebra: Gateway to Mathematics uses linear algebra as a vehicle to introduce students to the inner workings of mathematics. The structures and techniques of mathematics in turn provide an accessible framework to illustrate the powerful and beautiful results about vector spaces and linear transformations. The unifying concepts of linear algebra reveal the analogies among three primary examples: Euclidean spaces, function spaces, and collections of matrices. Students are gently introduced to abstractions of higher mathematics through discussions of the logical structure of proofs, the need to translate terminology into notation, and efficient ways to discover and present proofs. Application of linear algebra and concrete examples tie the abstract concepts to familiar objects from algebra, geometry, calculus, and everyday life. Students will finish a course using this text with an understanding of the basic results of linear algebra and an appreciation of the beauty and utility of mathematics. They will also be fortified with a degree of mathematical maturity required for subsequent courses in abstract algebra, real analysis, and elementary topology. Students who have prior background in dealing with the mechanical operations of vectors and matrices will benefit from seeing this material placed in a more general context.
Publisher: American Mathematical Soc.
ISBN: 1470462958
Category : Education
Languages : en
Pages : 420
Book Description
Linear Algebra: Gateway to Mathematics uses linear algebra as a vehicle to introduce students to the inner workings of mathematics. The structures and techniques of mathematics in turn provide an accessible framework to illustrate the powerful and beautiful results about vector spaces and linear transformations. The unifying concepts of linear algebra reveal the analogies among three primary examples: Euclidean spaces, function spaces, and collections of matrices. Students are gently introduced to abstractions of higher mathematics through discussions of the logical structure of proofs, the need to translate terminology into notation, and efficient ways to discover and present proofs. Application of linear algebra and concrete examples tie the abstract concepts to familiar objects from algebra, geometry, calculus, and everyday life. Students will finish a course using this text with an understanding of the basic results of linear algebra and an appreciation of the beauty and utility of mathematics. They will also be fortified with a degree of mathematical maturity required for subsequent courses in abstract algebra, real analysis, and elementary topology. Students who have prior background in dealing with the mechanical operations of vectors and matrices will benefit from seeing this material placed in a more general context.