Experimental Study of Multiphase Flow of Viscous Oil, Gas and Sand in Horizontal Pipes PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Experimental Study of Multiphase Flow of Viscous Oil, Gas and Sand in Horizontal Pipes PDF full book. Access full book title Experimental Study of Multiphase Flow of Viscous Oil, Gas and Sand in Horizontal Pipes by Panav Hulsurkar. Download full books in PDF and EPUB format.

Experimental Study of Multiphase Flow of Viscous Oil, Gas and Sand in Horizontal Pipes

Experimental Study of Multiphase Flow of Viscous Oil, Gas and Sand in Horizontal Pipes PDF Author: Panav Hulsurkar
Publisher:
ISBN:
Category : Heavy oil
Languages : en
Pages : 164

Book Description
The oil and gas industry relies on multiphase flow models and correlations to predict the behavior of fluids through wells and pipelines. Significant amount of research has been performed on the multiphase flow of different types of liquids with gases to extend the applicability of existing models to field-specific fluid conditions. Heavy oil and gas flow research commenced in the past decade and new correlations have been developed that define their flow behavior/regimes. This study aims to plant a foot in the quite deficient area of multiphase flow research that focuses on a sufficiently common situation faced by many heavy oil producing fields: the presence of sand in wells and pipelines. This study will be the first recorded attempt to understand the multiphase flow of heavy oil, gas, and sand. A 1.5" diameter multiphase flow loop facility capable of handling solids was designed and constructed for the study. Data logging instruments were calibrated and installed to be able to withstand the erosive effects of sand. The flow loop was leak and pressure tested with water and air. Three oils of 150, 196 and 218 cP viscosities were utilized to gather 49 single phase liquid, 227 two-phase liquid- air and 87 three-phase liquid, air and solid multiphase flow data points which included differential and absolute pressures, fluid flow rates, temperatures, liquid and composite liquid- solid hold- up data and photo and videotaping of the observed flow regimes. Validation of the setup was performed using single phase flow of oil and two-phase flow of oil and air. Sand was added in three different concentrations to the 218 cP oil and three-phase oil, gas and sand multiphase flow tests were performed. Flow patterns were identified and flow pattern maps were created using acquired data. No change was observed on flow pattern transitions by changing oil viscosities. Liquid hold- up and differential pressures were compared to observe the effect of changing oil viscosity and the presence of sand in varying concentrations on the two-phase flow of oil and gas and the three-phase flow of oil, gas and sand respectively. An increase in differential pressures was observed with increasing viscosities and the addition of sand. No changes in hold-up were seen with changing oil viscosities rather flow patterns impacted liquid hold-up significantly. The slug flow pattern was analyzed. Composite liquid-solid hold-up in slug flow were physically measured and predicted. Liquid slug lengths were predicted and compared with observed lengths using photo and videography techniques. Differential pressures and liquid hold-up were compared with existing multiphase flow models in the PIPESIM multiphase flow simulator to test model predictions against observed flow data. The dependence of differential pressure gradients and liquid hold-up on dimensionless variables was realized by performing normalized linear regressions to identify the most significant dimensionless groups and the results were given a mathematical form by proposing correlations for differential pressure and hold-up predictions. To the best of our knowledge, this study is the first attempt at systematically measuring pressure drop and liquid hold up during the three-phase flow of oil, gas and sand.

Experimental Study of Multiphase Flow of Viscous Oil, Gas and Sand in Horizontal Pipes

Experimental Study of Multiphase Flow of Viscous Oil, Gas and Sand in Horizontal Pipes PDF Author: Panav Hulsurkar
Publisher:
ISBN:
Category : Heavy oil
Languages : en
Pages : 164

Book Description
The oil and gas industry relies on multiphase flow models and correlations to predict the behavior of fluids through wells and pipelines. Significant amount of research has been performed on the multiphase flow of different types of liquids with gases to extend the applicability of existing models to field-specific fluid conditions. Heavy oil and gas flow research commenced in the past decade and new correlations have been developed that define their flow behavior/regimes. This study aims to plant a foot in the quite deficient area of multiphase flow research that focuses on a sufficiently common situation faced by many heavy oil producing fields: the presence of sand in wells and pipelines. This study will be the first recorded attempt to understand the multiphase flow of heavy oil, gas, and sand. A 1.5" diameter multiphase flow loop facility capable of handling solids was designed and constructed for the study. Data logging instruments were calibrated and installed to be able to withstand the erosive effects of sand. The flow loop was leak and pressure tested with water and air. Three oils of 150, 196 and 218 cP viscosities were utilized to gather 49 single phase liquid, 227 two-phase liquid- air and 87 three-phase liquid, air and solid multiphase flow data points which included differential and absolute pressures, fluid flow rates, temperatures, liquid and composite liquid- solid hold- up data and photo and videotaping of the observed flow regimes. Validation of the setup was performed using single phase flow of oil and two-phase flow of oil and air. Sand was added in three different concentrations to the 218 cP oil and three-phase oil, gas and sand multiphase flow tests were performed. Flow patterns were identified and flow pattern maps were created using acquired data. No change was observed on flow pattern transitions by changing oil viscosities. Liquid hold- up and differential pressures were compared to observe the effect of changing oil viscosity and the presence of sand in varying concentrations on the two-phase flow of oil and gas and the three-phase flow of oil, gas and sand respectively. An increase in differential pressures was observed with increasing viscosities and the addition of sand. No changes in hold-up were seen with changing oil viscosities rather flow patterns impacted liquid hold-up significantly. The slug flow pattern was analyzed. Composite liquid-solid hold-up in slug flow were physically measured and predicted. Liquid slug lengths were predicted and compared with observed lengths using photo and videography techniques. Differential pressures and liquid hold-up were compared with existing multiphase flow models in the PIPESIM multiphase flow simulator to test model predictions against observed flow data. The dependence of differential pressure gradients and liquid hold-up on dimensionless variables was realized by performing normalized linear regressions to identify the most significant dimensionless groups and the results were given a mathematical form by proposing correlations for differential pressure and hold-up predictions. To the best of our knowledge, this study is the first attempt at systematically measuring pressure drop and liquid hold up during the three-phase flow of oil, gas and sand.

Proceedings of the International Field Exploration and Development Conference 2023

Proceedings of the International Field Exploration and Development Conference 2023 PDF Author: Jia’en Lin
Publisher: Springer Nature
ISBN: 9819702607
Category :
Languages : en
Pages : 1731

Book Description


Experimental Investigation of High Viscous Multiphase Flow in Horizontal Pipelines

Experimental Investigation of High Viscous Multiphase Flow in Horizontal Pipelines PDF Author: Yahaya Danjuma Baba
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description


Multiphase Transport of Hydrocarbons in Pipes

Multiphase Transport of Hydrocarbons in Pipes PDF Author: Juan J. Manzano-Ruiz
Publisher: John Wiley & Sons
ISBN: 1119888530
Category : Technology & Engineering
Languages : en
Pages : 356

Book Description
Multiphase Transport of Hydrocarbons in Pipes An introduction to multiphase flows in the oil and gas industry The term ‘multiphase flow’ refers to the concurrent flow of oil and/or gas, alongside other substances or materials such as production water, chemical inhibitors, and solids (e.g. sand). This is a critical topic in the oil and gas industry, where the presence of multiple flow phases in pipelines affects deliverability, generates serious complications in predicting flow performance for system design and operation, and requires specific risk mitigation actions and continuous maintenance. Chemical and Mechanical Engineers interested in working in this industry will benefit from understanding the basic theories and practices required to model and operate multiphase flows through pipelines, wells, and other components of the production system. Multiphase Transport of Hydrocarbons in Pipes meets this need with a comprehensive overview of five decades of research into multiphase flow. Incorporating fundamental theories, historic and cutting-edge multiphase flow models, and concrete examples of current and future applications. This book provides a sound technical background for prospective or working engineers in need of understanding this crucial area of industry. Readers will also find: Fundamental principles supporting commercial software Detailed tools for estimating multiphase flow rates through flowlines, wells, and more Integration of conservation principles with thermodynamic and transport properties Coverage of legacy and modern simulation models This book is ideal for flow assurance engineers, facilities engineers, oil and gas production engineers, and process engineers, as well as chemical and mechanical engineering students looking to work in any of these roles.

An Experimental Study on High-viscosity Oil/gas Upward Flow in Vertical Pipes

An Experimental Study on High-viscosity Oil/gas Upward Flow in Vertical Pipes PDF Author: Denis Tauzikhovich Akhiyarov
Publisher:
ISBN:
Category : Petroleum pipelines
Languages : en
Pages : 128

Book Description


Slurry Flow

Slurry Flow PDF Author: C A Shook
Publisher: Elsevier
ISBN: 1483292207
Category : Science
Languages : en
Pages : 337

Book Description
Slurry Flow: Principles and Practice describes the basic concepts and methods for understanding and designing slurry flow systems, in-plan installations, and long-distance transportation systems. The goal of this book is to enable the design or plant engineer to derive the maximum benefit from a limited amount of test data and to generalize operating experience to new situations. Design procedures are described in detail and are accompanied by illustrative examples needed by engineers with little or no previous experience in slurry transport. The technical literature in this field is extensive: this book facilitates its use by surveying current research results and providing explanations of mechanistic flow models. This discussion of background scientific principles helps the practitioner to better interpret test data, select pumps, specify materials of construction, and choose measuring devises for slurry transport systems. The extensive range of topics covered in Slurry Flow: Principles and practice includes slurry rheology, homogeneous and heterogeneous slurry flow principles, wear mechanisms, pumping equipment, instrumentation, and operating aspects.

Multiphase Flow Metering

Multiphase Flow Metering PDF Author: Gioia Falcone
Publisher: Elsevier
ISBN: 0080558844
Category : Science
Languages : en
Pages : 340

Book Description
Over the last two decades the development, evaluation and use of MFM systems has been a major focus for the Oil & Gas industry worldwide. Since the early 1990's, when the first commercial meters started to appear, there have been around 2,000 field applications of MFM for field allocation, production optimisation and well testing. So far, many alternative metering systems have been developed, but none of them can be referred to as generally applicable or universally accurate. Both established and novel technologies suitable to measure the flow rates of gas, oil and water in a three-phase flow are reviewed and assessed within this book. Those technologies already implemented in the various commercial meters are evaluated in terms of operational and economical advantages or shortcomings from an operator point of view. The lessons learned about the practical reliability, accuracy and use of the available technology is discussed. The book suggests where the research to develop the next generation of MFM devices will be focused in order to meet the as yet unsolved problems. The book provides a critical and independent review of the current status and future trends of MFM, supported by the authors' strong background on multiphase flow and by practical examples. These are based on the authors' direct experience on MFM, gained over many years of research in connection with both operators and service companies. As there are currently no books on the subject of Multiphase Flow Metering for the Oil & Gas industry, this book will fill in the gap and provide a theoretical and practical reference for professionals, academics, and students.* Written by leading scholars and industry experts of international standing* Includes strong coverage of the theoretical background, yet also provides practical examples and current developments* Provides practical reference for professionals, students and academics

Applied Multiphase Flow in Pipes and Flow Assurance

Applied Multiphase Flow in Pipes and Flow Assurance PDF Author: Eissa M. Al-Safran
Publisher:
ISBN: 9781613994924
Category : Technology & Engineering
Languages : en
Pages : 358

Book Description
Applied Multiphase Flow in Pipes and Flow Assurance - Oil and Gas Production delivers the most recent advancements in multiphase flow technology while remaining easy to read and appropriate for undergraduate and graduate petroleum engineering students. Responding to the need for a more up-to-the-minute resource, this highly anticipated new book represents applications on the fundamentals with new material on heat transfer in production systems, flow assurance, transient multiphase flow in pipes and the TUFFP unified model. The complex computation procedure of mechanistic models is simplified through solution flowcharts and several example problems. Containing over 50 solved example problems and 140 homework problems, this new book will equip engineers with the skills necessary to use the latest steady-state simulators available.

Experimental Study on High Viscosity Oil-water Flows in Horizontal and Vertical Pipes

Experimental Study on High Viscosity Oil-water Flows in Horizontal and Vertical Pipes PDF Author: Duc Huu Vuong
Publisher:
ISBN:
Category : Horizontal oil well drilling
Languages : en
Pages : 196

Book Description


An experimental study of two-phase oil-water flow in horizontal pipes

An experimental study of two-phase oil-water flow in horizontal pipes PDF Author: Srihasak Arirachakaran
Publisher:
ISBN:
Category : Pipe
Languages : en
Pages : 117

Book Description