Author:
Publisher:
ISBN:
Category : Heat
Languages : en
Pages : 628
Book Description
Previews of Heat and Mass Transfer
Heat Transfer in Gas Turbines
Author: Mingking K. Chyu
Publisher:
ISBN:
Category : Science
Languages : en
Pages : 196
Book Description
Comprises 15 papers presented at the November 1994 Congress. Contributors examine the complex nature of hot-side and cold-side heat transfer rates and distribution in papers representing three categories of gas turbine heat transfer: film-cooling, disk and gas-side heat transfer, and internal coolin
Publisher:
ISBN:
Category : Science
Languages : en
Pages : 196
Book Description
Comprises 15 papers presented at the November 1994 Congress. Contributors examine the complex nature of hot-side and cold-side heat transfer rates and distribution in papers representing three categories of gas turbine heat transfer: film-cooling, disk and gas-side heat transfer, and internal coolin
ASME Technical Papers
Author:
Publisher:
ISBN:
Category : Mechanical engineering
Languages : en
Pages : 522
Book Description
Publisher:
ISBN:
Category : Mechanical engineering
Languages : en
Pages : 522
Book Description
Paper
Author:
Publisher:
ISBN:
Category : Mechanical engineering
Languages : en
Pages : 520
Book Description
Publisher:
ISBN:
Category : Mechanical engineering
Languages : en
Pages : 520
Book Description
Heat Transfer Reviews 1976-1986
Author: E. R. G. Eckert
Publisher: Wiley-Interscience
ISBN:
Category : Science
Languages : en
Pages : 714
Book Description
Continuing the annual review work started in 1954 at the University of Minnesota's Heat Transfer Laboratory, this prestigous volume collates the reviews from the International Journal of Heat and Mass Transfer from 1976 through 1986. Together with a comprehensive author and subject index, it provides the tools for continuous improvements in the efficiency of engineering devices, including the recent awareness of the necessity to conserve energy and to find new energy sources. As an invaluable guide for locating existing literature on important topics, this work helps engineers and students keep abreast of recent developments in specialized research areas.
Publisher: Wiley-Interscience
ISBN:
Category : Science
Languages : en
Pages : 714
Book Description
Continuing the annual review work started in 1954 at the University of Minnesota's Heat Transfer Laboratory, this prestigous volume collates the reviews from the International Journal of Heat and Mass Transfer from 1976 through 1986. Together with a comprehensive author and subject index, it provides the tools for continuous improvements in the efficiency of engineering devices, including the recent awareness of the necessity to conserve energy and to find new energy sources. As an invaluable guide for locating existing literature on important topics, this work helps engineers and students keep abreast of recent developments in specialized research areas.
Heat Transfer in Gas Turbine Engines
Author: American Society of Mechanical Engineers. Winter Annual Meeting
Publisher:
ISBN:
Category : Gas-turbines
Languages : en
Pages : 98
Book Description
Publisher:
ISBN:
Category : Gas-turbines
Languages : en
Pages : 98
Book Description
Flow and Heat Transfer in Rotating-disc Systems
Author: John Michael Owen
Publisher:
ISBN: 9780863800900
Category : Science
Languages : en
Pages : 312
Book Description
Discussing fluid mechanics and heat transfer in rotating-disc systems, this text simplifies and extends existing information to provide a basic understanding of the subject. Physical insight, mathematical models and experimental data are used to explain the flow structure and provide theoretical methods and correlations which will be of use to research workers and designers.
Publisher:
ISBN: 9780863800900
Category : Science
Languages : en
Pages : 312
Book Description
Discussing fluid mechanics and heat transfer in rotating-disc systems, this text simplifies and extends existing information to provide a basic understanding of the subject. Physical insight, mathematical models and experimental data are used to explain the flow structure and provide theoretical methods and correlations which will be of use to research workers and designers.
Rotating Flow
Author: Peter Childs
Publisher: Elsevier
ISBN: 0123820995
Category : Science
Languages : en
Pages : 415
Book Description
Rotating flow is critically important across a wide range of scientific, engineering and product applications, providing design and modeling capability for diverse products such as jet engines, pumps and vacuum cleaners, as well as geophysical flows.Developed over the course of 20 years' research into rotating fluids and associated heat transfer at the University of Sussex Thermo-Fluid Mechanics Research Centre (TFMRC), Rotating Flow is an indispensable reference and resource for all those working within the gas turbine and rotating machinery industries.Traditional fluid and flow dynamics titles offer the essential background but generally include very sparse coverage of rotating flows—which is where this book comes in. Beginning with an accessible introduction to rotating flow, recognized expert Peter Childs takes you through fundamental equations, vorticity and vortices, rotating disc flow, flow around rotating cylinders and flow in rotating cavities, with an introduction to atmospheric and oceanic circulations included to help deepen understanding.Whilst competing resources are weighed down with complex mathematics, this book focuses on the essential equations and provides full workings to take readers step-by-step through the theory so they can concentrate on the practical applications. - A detailed yet accessible introduction to rotating flows, illustrating the differences between flows where rotation is significant and highlighting the non-intuitive nature of rotating flow fields - Written by world-leading authority on rotating flow, Peter Childs, making this a unique and authoritative work - Covers the essential theory behind engineering applications such as rotating discs, cylinders, and cavities, with natural phenomena such as atmospheric and oceanic flows used to explain underlying principles - Provides a rigorous, fully worked mathematical account of rotating flows whilst also including numerous practical examples in daily life to highlight the relevance and prevalence of different flow types - Concise summaries of the results of important research and lists of references included to direct readers to significant further resources
Publisher: Elsevier
ISBN: 0123820995
Category : Science
Languages : en
Pages : 415
Book Description
Rotating flow is critically important across a wide range of scientific, engineering and product applications, providing design and modeling capability for diverse products such as jet engines, pumps and vacuum cleaners, as well as geophysical flows.Developed over the course of 20 years' research into rotating fluids and associated heat transfer at the University of Sussex Thermo-Fluid Mechanics Research Centre (TFMRC), Rotating Flow is an indispensable reference and resource for all those working within the gas turbine and rotating machinery industries.Traditional fluid and flow dynamics titles offer the essential background but generally include very sparse coverage of rotating flows—which is where this book comes in. Beginning with an accessible introduction to rotating flow, recognized expert Peter Childs takes you through fundamental equations, vorticity and vortices, rotating disc flow, flow around rotating cylinders and flow in rotating cavities, with an introduction to atmospheric and oceanic circulations included to help deepen understanding.Whilst competing resources are weighed down with complex mathematics, this book focuses on the essential equations and provides full workings to take readers step-by-step through the theory so they can concentrate on the practical applications. - A detailed yet accessible introduction to rotating flows, illustrating the differences between flows where rotation is significant and highlighting the non-intuitive nature of rotating flow fields - Written by world-leading authority on rotating flow, Peter Childs, making this a unique and authoritative work - Covers the essential theory behind engineering applications such as rotating discs, cylinders, and cavities, with natural phenomena such as atmospheric and oceanic flows used to explain underlying principles - Provides a rigorous, fully worked mathematical account of rotating flows whilst also including numerous practical examples in daily life to highlight the relevance and prevalence of different flow types - Concise summaries of the results of important research and lists of references included to direct readers to significant further resources
Aeroacoustics of Flight Vehicles
Author: Harvey H. Hubbard
Publisher:
ISBN:
Category : Aerodynamic noise
Languages : en
Pages : 620
Book Description
Publisher:
ISBN:
Category : Aerodynamic noise
Languages : en
Pages : 620
Book Description
Gas Turbine Heat Transfer and Cooling Technology, Second Edition
Author: Je-Chin Han
Publisher: CRC Press
ISBN: 1439855684
Category : Science
Languages : en
Pages : 892
Book Description
A comprehensive reference for engineers and researchers, Gas Turbine Heat Transfer and Cooling Technology, Second Edition has been completely revised and updated to reflect advances in the field made during the past ten years. The second edition retains the format that made the first edition so popular and adds new information mainly based on selected published papers in the open literature. See What’s New in the Second Edition: State-of-the-art cooling technologies such as advanced turbine blade film cooling and internal cooling Modern experimental methods for gas turbine heat transfer and cooling research Advanced computational models for gas turbine heat transfer and cooling performance predictions Suggestions for future research in this critical technology The book discusses the need for turbine cooling, gas turbine heat-transfer problems, and cooling methodology and covers turbine rotor and stator heat-transfer issues, including endwall and blade tip regions under engine conditions, as well as under simulated engine conditions. It then examines turbine rotor and stator blade film cooling and discusses the unsteady high free-stream turbulence effect on simulated cascade airfoils. From here, the book explores impingement cooling, rib-turbulent cooling, pin-fin cooling, and compound and new cooling techniques. It also highlights the effect of rotation on rotor coolant passage heat transfer. Coverage of experimental methods includes heat-transfer and mass-transfer techniques, liquid crystal thermography, optical techniques, as well as flow and thermal measurement techniques. The book concludes with discussions of governing equations and turbulence models and their applications for predicting turbine blade heat transfer and film cooling, and turbine blade internal cooling.
Publisher: CRC Press
ISBN: 1439855684
Category : Science
Languages : en
Pages : 892
Book Description
A comprehensive reference for engineers and researchers, Gas Turbine Heat Transfer and Cooling Technology, Second Edition has been completely revised and updated to reflect advances in the field made during the past ten years. The second edition retains the format that made the first edition so popular and adds new information mainly based on selected published papers in the open literature. See What’s New in the Second Edition: State-of-the-art cooling technologies such as advanced turbine blade film cooling and internal cooling Modern experimental methods for gas turbine heat transfer and cooling research Advanced computational models for gas turbine heat transfer and cooling performance predictions Suggestions for future research in this critical technology The book discusses the need for turbine cooling, gas turbine heat-transfer problems, and cooling methodology and covers turbine rotor and stator heat-transfer issues, including endwall and blade tip regions under engine conditions, as well as under simulated engine conditions. It then examines turbine rotor and stator blade film cooling and discusses the unsteady high free-stream turbulence effect on simulated cascade airfoils. From here, the book explores impingement cooling, rib-turbulent cooling, pin-fin cooling, and compound and new cooling techniques. It also highlights the effect of rotation on rotor coolant passage heat transfer. Coverage of experimental methods includes heat-transfer and mass-transfer techniques, liquid crystal thermography, optical techniques, as well as flow and thermal measurement techniques. The book concludes with discussions of governing equations and turbulence models and their applications for predicting turbine blade heat transfer and film cooling, and turbine blade internal cooling.