Experimental Studies in Hydraulic Fracture Growth PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Experimental Studies in Hydraulic Fracture Growth PDF full book. Access full book title Experimental Studies in Hydraulic Fracture Growth by Murtadha Jawad Al Tammar. Download full books in PDF and EPUB format.

Experimental Studies in Hydraulic Fracture Growth

Experimental Studies in Hydraulic Fracture Growth PDF Author: Murtadha Jawad Al Tammar
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Book Description
Novel experimental capabilities to study hydraulic fracturing in the laboratory are developed and utilized in this research. Fracturing experiments are conducted using two-dimensional (2-D) test specimens that are made from synthetic, porous materials with well-characterized properties. Fracture growth during the experiments is captured with clear, high resolution images and subsequent image processing using Digital Image Correlation (DIC) analyses. First, we investigated the problem of a hydraulic fracture induced in a soft layer bounded by harder layers. The experiments reveal a clear tendency for induced fractures to avoid harder bounding layers. This is seen as fracture deflection or kinking away from the harder layers, fracture curving between the harder bounding layers, and fracture tilt from the maximum far-field stress direction. In addition, when a fracture is induced in a relatively thin layer, the fracture avoids the harder bounding layers by initiating and propagating parallel to the bounding interfaces. Fracture propagation parallel to the bounding layers is also observed in relatively wide layers when the far-field stress is isotropic or very low. Complex fracture trajectories are induced in layered specimens when the far-field differential stress is low or intermediate. In a second set of experiments, we used homogeneous specimens with multiple fluid injection ports. It is clearly shown that injection-induced stresses can appreciably affect hydraulic fracture trajectories and fracturing pressures. We show that induced hydraulic fractures, under our laboratory conditions, are attracted to regions of high pore pressure. Induced fractures tend to propagate towards neighboring high pore pressure injection ports. The recorded breakdown pressure in the fracturing experiments decreases significantly as the number of neighboring injectors increases. The influence of an adjacent fluid injection source on the hydraulic fracture trajectory can be minimized or suppressed when the applied far-field differential stress is relatively high. Preferential fracture growth due to changes in pore pressure in field applications as compared to our laboratory observations is also discussed. In a third set of experiments, we show that the breakdown pressure of test specimens can be reduced markedly with low injection rates, cyclic borehole pressurization, and/or constant pressure injection. This is largely related to the extent of pressurized region around the borehole caused by fluid leakoff in dry specimens and possible specimen weakening by fluid contact. The breakdown pressure can also be reduced by notching the specimen borehole when the injection fluid is allowed to flow and leak off along the borehole notch. In a fourth set of experiments, we compared fracture growth induced by a viscous liquid and a gas which are glycerin and nitrogen, respectively. The experiments show that fractures propagate through test specimens in a gradual manner when induced by glycerin at various injection rates. By contrast, nitrogen injection induces fractures that grow much more rapidly, which we attribute to its compressible nature and ultralow viscosity. The breakdown pressure is also shown to be markedly lower for nitrogen fractures compared to glycerin fractures. Moreover, an experimental evidence of fluid lag when fractures are induced with viscous fluids is demonstrated. Lastly, experiments were conducted to examine the behavior of an induced hydraulic fracture as it approaches a cemented natural fracture. We show a tendency for the induced hydraulic fracture to cross thick natural fractures filled with softer materials than the host rock and to be diverted by thick natural fractures with harder filling materials. The induced hydraulic fracture also tends to cross hard natural fractures when the natural fractures are relatively thin. In addition, the induced hydraulic fracture from the injection port is shown to be diverted by a thin, hard natural fracture that is placed relatively close to the injection port but crosses the same natural fracture when placed farther away from the injection port. These observations, and numerous others, documented in this dissertation provide fundamental insights on various aspects of hydraulic fracture propagation. Our extensive set of laboratory observations are also very useful in validating numerical hydraulic fracturing simulators due to the small-scale, 2-D nature, and characterized properties of the test specimens used in the experiments

Experimental Studies in Hydraulic Fracture Growth

Experimental Studies in Hydraulic Fracture Growth PDF Author: Murtadha Jawad Al Tammar
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Book Description
Novel experimental capabilities to study hydraulic fracturing in the laboratory are developed and utilized in this research. Fracturing experiments are conducted using two-dimensional (2-D) test specimens that are made from synthetic, porous materials with well-characterized properties. Fracture growth during the experiments is captured with clear, high resolution images and subsequent image processing using Digital Image Correlation (DIC) analyses. First, we investigated the problem of a hydraulic fracture induced in a soft layer bounded by harder layers. The experiments reveal a clear tendency for induced fractures to avoid harder bounding layers. This is seen as fracture deflection or kinking away from the harder layers, fracture curving between the harder bounding layers, and fracture tilt from the maximum far-field stress direction. In addition, when a fracture is induced in a relatively thin layer, the fracture avoids the harder bounding layers by initiating and propagating parallel to the bounding interfaces. Fracture propagation parallel to the bounding layers is also observed in relatively wide layers when the far-field stress is isotropic or very low. Complex fracture trajectories are induced in layered specimens when the far-field differential stress is low or intermediate. In a second set of experiments, we used homogeneous specimens with multiple fluid injection ports. It is clearly shown that injection-induced stresses can appreciably affect hydraulic fracture trajectories and fracturing pressures. We show that induced hydraulic fractures, under our laboratory conditions, are attracted to regions of high pore pressure. Induced fractures tend to propagate towards neighboring high pore pressure injection ports. The recorded breakdown pressure in the fracturing experiments decreases significantly as the number of neighboring injectors increases. The influence of an adjacent fluid injection source on the hydraulic fracture trajectory can be minimized or suppressed when the applied far-field differential stress is relatively high. Preferential fracture growth due to changes in pore pressure in field applications as compared to our laboratory observations is also discussed. In a third set of experiments, we show that the breakdown pressure of test specimens can be reduced markedly with low injection rates, cyclic borehole pressurization, and/or constant pressure injection. This is largely related to the extent of pressurized region around the borehole caused by fluid leakoff in dry specimens and possible specimen weakening by fluid contact. The breakdown pressure can also be reduced by notching the specimen borehole when the injection fluid is allowed to flow and leak off along the borehole notch. In a fourth set of experiments, we compared fracture growth induced by a viscous liquid and a gas which are glycerin and nitrogen, respectively. The experiments show that fractures propagate through test specimens in a gradual manner when induced by glycerin at various injection rates. By contrast, nitrogen injection induces fractures that grow much more rapidly, which we attribute to its compressible nature and ultralow viscosity. The breakdown pressure is also shown to be markedly lower for nitrogen fractures compared to glycerin fractures. Moreover, an experimental evidence of fluid lag when fractures are induced with viscous fluids is demonstrated. Lastly, experiments were conducted to examine the behavior of an induced hydraulic fracture as it approaches a cemented natural fracture. We show a tendency for the induced hydraulic fracture to cross thick natural fractures filled with softer materials than the host rock and to be diverted by thick natural fractures with harder filling materials. The induced hydraulic fracture also tends to cross hard natural fractures when the natural fractures are relatively thin. In addition, the induced hydraulic fracture from the injection port is shown to be diverted by a thin, hard natural fracture that is placed relatively close to the injection port but crosses the same natural fracture when placed farther away from the injection port. These observations, and numerous others, documented in this dissertation provide fundamental insights on various aspects of hydraulic fracture propagation. Our extensive set of laboratory observations are also very useful in validating numerical hydraulic fracturing simulators due to the small-scale, 2-D nature, and characterized properties of the test specimens used in the experiments

Mechanics of Hydraulic Fracturing

Mechanics of Hydraulic Fracturing PDF Author: Xi Zhang
Publisher: John Wiley & Sons
ISBN: 1119742455
Category : Technology & Engineering
Languages : en
Pages : 291

Book Description
Mechanics of Hydraulic Fracturing Comprehensive single-volume reference work providing an overview of experimental results and predictive methods for hydraulic fracture growth in rocks Mechanics of Hydraulic Fracturing: Experiment, Model, and Monitoring provides a summary of the research in mechanics of hydraulic fractures during the past two decades, plus new research trends to look for in the future. The book covers the contributions from theory, modeling, and experimentation, including the application of models to reservoir stimulation, mining preconditioning, and the formation of geological structures. The four expert editors emphasize the variety of diverse methods and tools in hydraulic fracturing and help the reader understand hydraulic fracture mechanics in complex geological situations. To aid in reader comprehension, practical examples of new approaches and methods are presented throughout the book. Key topics covered in the book include: Prediction of fracture shapes, sizes, and distributions in sedimentary basins, plus their importance in petroleum industry Real-time monitoring methods, such as micro-seismicity and trace tracking How to uncover geometries of fractures like dikes and veins Fracture growth of individual foundations and its applications Researchers and professionals working in the field of fluid-driven fracture growth will find immense value in this comprehensive reference on hydraulic fracturing mechanics.

Hydraulic Fracture Modeling

Hydraulic Fracture Modeling PDF Author: Yu-Shu Wu
Publisher: Gulf Professional Publishing
ISBN: 0128129999
Category : Technology & Engineering
Languages : en
Pages : 568

Book Description
Hydraulic Fracture Modeling delivers all the pertinent technology and solutions in one product to become the go-to source for petroleum and reservoir engineers. Providing tools and approaches, this multi-contributed reference presents current and upcoming developments for modeling rock fracturing including their limitations and problem-solving applications. Fractures are common in oil and gas reservoir formations, and with the ongoing increase in development of unconventional reservoirs, more petroleum engineers today need to know the latest technology surrounding hydraulic fracturing technology such as fracture rock modeling. There is tremendous research in the area but not all located in one place. Covering two types of modeling technologies, various effective fracturing approaches and model applications for fracturing, the book equips today’s petroleum engineer with an all-inclusive product to characterize and optimize today’s more complex reservoirs. Offers understanding of the details surrounding fracturing and fracture modeling technology, including theories and quantitative methods Provides academic and practical perspective from multiple contributors at the forefront of hydraulic fracturing and rock mechanics Provides today’s petroleum engineer with model validation tools backed by real-world case studies

Hydraulic-fracture Propagation in Layered Rock

Hydraulic-fracture Propagation in Layered Rock PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description
Fracture geometry is an important concern in the design of a massive hydraulic fracture treatment for improved natural gas recovery from tight gas sands. Possible prediction of vertical fracture growth and containment in layered rock requires an improved understanding of the parameters which may control fracture growth across layer interfaces. We have conducted laboratory hydraulic fracture experiments and elastic finite element studies which show that at least two distinct geologic conditions may inhibit or contain the vertical growth of hydraulic fractures in layered rock; (1) a weak interfacial shear strength of the layers and (2) a compressional increase in the minimum horizontal stress in the bounding layer. The second condition is more important and more likely to occur at depth. Variations in the horizontal stress can result from differences in elastic properties of individual layers in a layered rock sequence. A compressional increase in the minimum horizontal stress can occur in going from high shear modulus into low shear modulus layers.

Hydraulic Fracturing Optimization

Hydraulic Fracturing Optimization PDF Author: Andreas Michael
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Book Description
Hydraulic fracturing is a reservoir stimulation technique used in the petroleum industry since 1947. High pressure fluid composed mainly of water generates cracks near the wellbore improving the surrounding permeability and enhancing the flow of oil and gas to the surface. Advances in hydraulic fracturing coupled with developments in horizontal drilling, have unlocked vast quantities of unconventional resources, previously believed impossible to be produced. Fracture creation induces perturbations in the nearby in-situ stress regime suppressing the initiation and propagation of other fractures. Neighboring fractures are affected by this stress shadow effect, causing them to grow dissimilarly and they receive unequal portions of the injected fluid. Numerical simulation models have shown that non-uniform perforation cluster distributions with interior fractures closer to the exterior ones can balance out these stress shadow effects, promoting more homogeneous multiple fracture growth compared to uniform perforation cluster distributions. In this work, laboratory-scale tests on three perforation configurations are performed on transparent specimens using distinctly colored fracturing fluids such that fracture growth can be observed. A normal faulting stress regime is replicated with the introduction of an overburden load in a confined space. The results have shown that uniform perforation spacing configurations yields higher degree of fracture growth homogeneity, as maximum spacing minimizes stress shadow effects, compared to moving the middle perforation closer to the toe, or heel of the horizontal well. The experiments also showed a proclivity to form one dominant fracture. Time delay, neglected in most theoretical modelling studies, between fracture initiations is found to be a key parameter and is believed to be one of the major factors promoting this dominant fracture tendency along with wellbore pressure gradients. Moreover, in several cases, the injected bypassed perforation(s) to generate fracture(s) downstream. Finally, the compressibility of the fracturing fluid triggered somewhat unexpected transient pressure behavior. The understanding of the stress shadow effects and what influences them could lead to optimization of hydraulic fracturing treatment design in terms of productivity and cost. Therefore, achieving more homogeneous multiple fracture growth patterns can be pivotal on the economic feasibility of several stimulation treatments.

Fracture Mechanics of Rock

Fracture Mechanics of Rock PDF Author: Barry Kean Atkinson
Publisher: Elsevier
ISBN: 1483292746
Category : Science
Languages : en
Pages : 547

Book Description
The analysis of crack problems through fracture mechanics has been applied to the study of materials such as glass, metals and ceramics because relatively simple fracture criteria describe the failure of these materials. The increased attention paid to experimental rock fracture mechanics has led to major contributions to the solving of geophysical problems. The text presents a concise treatment of the physics and mathematics of a representative selection of problems from areas such as earthquake mechanics and prediction, hydraulic fracturing, hot dry rock geothermal energy, fault mechanics, and dynamic fragmentation.

Experiments and Analysis on Hydraulic Fracture Growth in an Interface Separation Apparatus

Experiments and Analysis on Hydraulic Fracture Growth in an Interface Separation Apparatus PDF Author: Donald Edward Johnson
Publisher:
ISBN:
Category :
Languages : en
Pages : 322

Book Description


Hydraulic Fracturing and Rock Mechanics

Hydraulic Fracturing and Rock Mechanics PDF Author: Yu Zhao
Publisher: Springer Nature
ISBN: 9819925401
Category : Science
Languages : en
Pages : 269

Book Description
This open access book is the first to consider the effect of non-uniform fluid pressure in hydraulic fractures. The book covers the key topics in the process of hydraulic fracture nucleation, growth, interaction and fracture network formation. Laboratory experiments and theoretical modeling are combined to elucidate the formation mechanism of complex fracture networks. This book is suitable for master’s/Ph.D. students, scientists and engineers majoring in rock mechanics and petroleum engineering who need to use a more reliable model to predict fracture behavior.

Geomechanics and Hydraulic Fracturing for Shale Reservoirs

Geomechanics and Hydraulic Fracturing for Shale Reservoirs PDF Author: Yu Wang
Publisher: Scientific Research Publishing, Inc. USA
ISBN: 1618968963
Category : Art
Languages : en
Pages : 383

Book Description
This book is intended as a reference book for advanced graduate students and research engineers in shale gas development or rock mechanical engineering. Globally, there is widespread interest in exploiting shale gas resources to meet rising energy demands, maintain energy security and stability in supply and reduce dependence on higher carbon sources of energy, namely coal and oil. However, extracting shale gas is a resource intensive process and is dependent on the geological and geomechanical characteristics of the source rocks, making the development of certain formations uneconomic using current technologies. Therefore, evaluation of the physical and mechanical properties of shale, together with technological advancements, is critical in verifying the economic viability of such formation. Accurate geomechanical information about the rock and its variation through the shale is important since stresses along the wellbore can control fracture initiation and frac development. In addition, hydraulic fracturing has been widely employed to enhance the production of oil and gas from underground reservoirs. Hydraulic fracturing is a complex operation in which the fluid is pumped at a high pressure into a selected section of the wellbore. The interaction between the hydraulic fractures and natural fractures is the key to fracturing effectiveness prediction and high gas development. The development and growth of a hydraulic fracture through the natural fracture systems of shale is probably more complex than can be described here, but may be somewhat predictable if the fracture system and the development of stresses can be explained. As a result, comprehensive shale geomechanical experiments, physical modeling experiment and numerical investigations should be conducted to reveal the fracturing mechanical behaviors of shale.

Hydraulic Fracture Mechanics

Hydraulic Fracture Mechanics PDF Author: Peter Valkó
Publisher:
ISBN:
Category : Technology & Engineering
Languages : en
Pages : 328

Book Description
The book explores the theoretical background of one of the most widespread activities in hydrocarbon wells, that of hydraulic fracturing. A comprehensive treatment of the basic phenomena includes: linear elasticity, stresses, fracture geometry and rheology. The diverse concepts of mechanics are integrated into a coherent description of hydraulic fracture propagation. The chapters in the book are cross-referenced throughout and the connections between the various phenomena are emphasized. The book offers readers a unique approach to the subject with the use of many numerical examples.