Experimental Methods for the Analysis of Optimization Algorithms PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Experimental Methods for the Analysis of Optimization Algorithms PDF full book. Access full book title Experimental Methods for the Analysis of Optimization Algorithms by Thomas Bartz-Beielstein. Download full books in PDF and EPUB format.

Experimental Methods for the Analysis of Optimization Algorithms

Experimental Methods for the Analysis of Optimization Algorithms PDF Author: Thomas Bartz-Beielstein
Publisher: Springer Science & Business Media
ISBN: 3642025382
Category : Computers
Languages : en
Pages : 469

Book Description
In operations research and computer science it is common practice to evaluate the performance of optimization algorithms on the basis of computational results, and the experimental approach should follow accepted principles that guarantee the reliability and reproducibility of results. However, computational experiments differ from those in other sciences, and the last decade has seen considerable methodological research devoted to understanding the particular features of such experiments and assessing the related statistical methods. This book consists of methodological contributions on different scenarios of experimental analysis. The first part overviews the main issues in the experimental analysis of algorithms, and discusses the experimental cycle of algorithm development; the second part treats the characterization by means of statistical distributions of algorithm performance in terms of solution quality, runtime and other measures; and the third part collects advanced methods from experimental design for configuring and tuning algorithms on a specific class of instances with the goal of using the least amount of experimentation. The contributor list includes leading scientists in algorithm design, statistical design, optimization and heuristics, and most chapters provide theoretical background and are enriched with case studies. This book is written for researchers and practitioners in operations research and computer science who wish to improve the experimental assessment of optimization algorithms and, consequently, their design.

Experimental Methods for the Analysis of Optimization Algorithms

Experimental Methods for the Analysis of Optimization Algorithms PDF Author: Thomas Bartz-Beielstein
Publisher: Springer Science & Business Media
ISBN: 3642025382
Category : Computers
Languages : en
Pages : 469

Book Description
In operations research and computer science it is common practice to evaluate the performance of optimization algorithms on the basis of computational results, and the experimental approach should follow accepted principles that guarantee the reliability and reproducibility of results. However, computational experiments differ from those in other sciences, and the last decade has seen considerable methodological research devoted to understanding the particular features of such experiments and assessing the related statistical methods. This book consists of methodological contributions on different scenarios of experimental analysis. The first part overviews the main issues in the experimental analysis of algorithms, and discusses the experimental cycle of algorithm development; the second part treats the characterization by means of statistical distributions of algorithm performance in terms of solution quality, runtime and other measures; and the third part collects advanced methods from experimental design for configuring and tuning algorithms on a specific class of instances with the goal of using the least amount of experimentation. The contributor list includes leading scientists in algorithm design, statistical design, optimization and heuristics, and most chapters provide theoretical background and are enriched with case studies. This book is written for researchers and practitioners in operations research and computer science who wish to improve the experimental assessment of optimization algorithms and, consequently, their design.

Theory and Principled Methods for the Design of Metaheuristics

Theory and Principled Methods for the Design of Metaheuristics PDF Author: Yossi Borenstein
Publisher: Springer Science & Business Media
ISBN: 3642332064
Category : Computers
Languages : en
Pages : 287

Book Description
Metaheuristics, and evolutionary algorithms in particular, are known to provide efficient, adaptable solutions for many real-world problems, but the often informal way in which they are defined and applied has led to misconceptions, and even successful applications are sometimes the outcome of trial and error. Ideally, theoretical studies should explain when and why metaheuristics work, but the challenge is huge: mathematical analysis requires significant effort even for simple scenarios and real-life problems are usually quite complex. In this book the editors establish a bridge between theory and practice, presenting principled methods that incorporate problem knowledge in evolutionary algorithms and other metaheuristics. The book consists of 11 chapters dealing with the following topics: theoretical results that show what is not possible, an assessment of unsuccessful lines of empirical research; methods for rigorously defining the appropriate scope of problems while acknowledging the compromise between the class of problems to which a search algorithm is applied and its overall expected performance; the top-down principled design of search algorithms, in particular showing that it is possible to design algorithms that are provably good for some rigorously defined classes; and, finally, principled practice, that is reasoned and systematic approaches to setting up experiments, metaheuristic adaptation to specific problems, and setting parameters. With contributions by some of the leading researchers in this domain, this book will be of significant value to scientists, practitioners, and graduate students in the areas of evolutionary computing, metaheuristics, and computational intelligence.

Optimal Design of Experiments

Optimal Design of Experiments PDF Author: Friedrich Pukelsheim
Publisher: SIAM
ISBN: 0898716047
Category : Mathematics
Languages : en
Pages : 527

Book Description
Optimal Design of Experiments offers a rare blend of linear algebra, convex analysis, and statistics. The optimal design for statistical experiments is first formulated as a concave matrix optimization problem. Using tools from convex analysis, the problem is solved generally for a wide class of optimality criteria such as D-, A-, or E-optimality. The book then offers a complementary approach that calls for the study of the symmetry properties of the design problem, exploiting such notions as matrix majorization and the Kiefer matrix ordering. The results are illustrated with optimal designs for polynomial fit models, Bayes designs, balanced incomplete block designs, exchangeable designs on the cube, rotatable designs on the sphere, and many other examples.

Uncertainty Management in Simulation-Optimization of Complex Systems

Uncertainty Management in Simulation-Optimization of Complex Systems PDF Author: Gabriella Dellino
Publisher: Springer
ISBN: 1489975470
Category : Business & Economics
Languages : en
Pages : 282

Book Description
​This book aims at illustrating strategies to account for uncertainty in complex systems described by computer simulations. When optimizing the performances of these systems, accounting or neglecting uncertainty may lead to completely different results; therefore, uncertainty management is a major issues in simulation-optimization. Because of its wide field of applications, simulation-optimization issues have been addressed by different communities with different methods, and from slightly different perspectives. Alternative approaches have been developed, also depending on the application context, without any well-established method clearly outperforming the others. This editorial project brings together — as chapter contributors — researchers from different (though interrelated) areas; namely, statistical methods, experimental design, stochastic programming, global optimization, metamodeling, and design and analysis of computer simulation experiments. Editors’ goal is to take advantage of such a multidisciplinary environment, to offer to the readers a much deeper understanding of the commonalities and differences of the various approaches to simulation-based optimization, especially in uncertain environments. Editors aim to offer a bibliographic reference on the topic, enabling interested readers to learn about the state-of-the-art in this research area, also accounting for potential real-world applications to improve also the state-of-the-practice. Besides researchers and scientists of the field, the primary audience for the proposed book includes PhD students, academic teachers, as well as practitioners and professionals. Each of these categories of potential readers present adequate channels for marketing actions, e.g. scientific, academic or professional societies, internet-based communities, and authors or buyers of related publications.​

Black Box Optimization, Machine Learning, and No-Free Lunch Theorems

Black Box Optimization, Machine Learning, and No-Free Lunch Theorems PDF Author: Panos M. Pardalos
Publisher: Springer Nature
ISBN: 3030665151
Category : Mathematics
Languages : en
Pages : 388

Book Description
This edited volume illustrates the connections between machine learning techniques, black box optimization, and no-free lunch theorems. Each of the thirteen contributions focuses on the commonality and interdisciplinary concepts as well as the fundamentals needed to fully comprehend the impact of individual applications and problems. Current theoretical, algorithmic, and practical methods used are provided to stimulate a new effort towards innovative and efficient solutions. The book is intended for beginners who wish to achieve a broad overview of optimization methods and also for more experienced researchers as well as researchers in mathematics, optimization, operations research, quantitative logistics, data analysis, and statistics, who will benefit from access to a quick reference to key topics and methods. The coverage ranges from mathematically rigorous methods to heuristic and evolutionary approaches in an attempt to equip the reader with different viewpoints of the same problem.

Statistical and Computational Techniques in Manufacturing

Statistical and Computational Techniques in Manufacturing PDF Author: J. Paulo Davim
Publisher: Springer Science & Business Media
ISBN: 364225859X
Category : Technology & Engineering
Languages : en
Pages : 294

Book Description
In recent years, interest in developing statistical and computational techniques for applied manufacturing engineering has been increased. Today, due to the great complexity of manufacturing engineering and the high number of parameters used, conventional approaches are no longer sufficient. Therefore, in manufacturing, statistical and computational techniques have achieved several applications, namely, modelling and simulation manufacturing processes, optimization manufacturing parameters, monitoring and control, computer-aided process planning, etc. The present book aims to provide recent information on statistical and computational techniques applied in manufacturing engineering. The content is suitable for final undergraduate engineering courses or as a subject on manufacturing at the postgraduate level. This book serves as a useful reference for academics, statistical and computational science researchers, mechanical, manufacturing and industrial engineers, and professionals in industries related to manufacturing engineering.

A Guide to Experimental Algorithmics

A Guide to Experimental Algorithmics PDF Author: Catherine C. McGeoch
Publisher: Cambridge University Press
ISBN: 1107001730
Category : Computers
Languages : en
Pages : 273

Book Description
This is a guidebook for those who want to use computational experiments to support their work in algorithm design and analysis. Numerous case studies and examples show how to apply these concepts. All the necessary concepts in computer architecture and data analysis are covered so that the book can be used by anyone who has taken a course or two in data structures and algorithms.

Design of Experiments for Chemical, Pharmaceutical, Food, and Industrial Applications

Design of Experiments for Chemical, Pharmaceutical, Food, and Industrial Applications PDF Author: Carrillo-Cedillo, Eugenia Gabriela
Publisher: IGI Global
ISBN: 179981520X
Category : Science
Languages : en
Pages : 429

Book Description
Statistics is a key characteristic that assists a wide variety of professions including business, government, and factual sciences. Companies need data calculation to make informed decisions that help maintain their relevance. Design of experiments (DOE) is a set of active techniques that provides a more efficient approach for industries to test their processes and form effective conclusions. Experimental design can be implemented into multiple professions, and it is a necessity to promote applicable research on this up-and-coming method. Design of Experiments for Chemical, Pharmaceutical, Food, and Industrial Applications is a pivotal reference source that seeks to increase the use of design of experiments to optimize and improve analytical methods and productive processes in order to use less resources and time. While highlighting topics such as multivariate methods, factorial experiments, and pharmaceutical research, this publication is ideally designed for industrial designers, research scientists, chemical engineers, managers, academicians, and students seeking current research on advanced and multivariate statistics.

Learning and Intelligent Optimization

Learning and Intelligent Optimization PDF Author: Panos M. Pardalos
Publisher: Springer
ISBN: 3319095846
Category : Computers
Languages : en
Pages : 405

Book Description
This book constitutes the thoroughly refereed post-conference proceedings of the 8th International Conference on Learning and Optimization, LION 8, which was held in Gainesville, FL, USA, in February 2014. The 33 contributions presented were carefully reviewed and selected for inclusion in this book. A large variety of topics are covered, such as algorithm configuration; multiobjective optimization; metaheuristics; graphs and networks; logistics and transportation; and biomedical applications.

Proceedings. 20. Workshop Computational Intelligence, Dortmund, 1. Dezember - 3. Dezember 2010

Proceedings. 20. Workshop Computational Intelligence, Dortmund, 1. Dezember - 3. Dezember 2010 PDF Author: Frank Hoffmann
Publisher: KIT Scientific Publishing
ISBN: 3866445806
Category : Computers
Languages : en
Pages : 328

Book Description
Dieser Tagungsband enthält die Beiträge des 20. Workshops "Computational Intelligence" des Fachausschusses 5.14 der VDI/VDE-Gesellschaft für Mess- und Automatisierungstechnik (GMA) der vom 1.-3. Dezember 2010 im Haus Bommerholz (Dortmund) stattfand. Die Schwerpunkte waren Methoden, Anwendungen und Tools für- Fuzzy-Systeme, - Künstliche Neuronale Netze, - Evolutionäre Algorithmen und- Data-Mining-Verfahrensowie der Methodenvergleich anhand von industriellen und Benchmark-Problemen.