Gas Turbine Heat Transfer and Cooling Technology, Second Edition PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Gas Turbine Heat Transfer and Cooling Technology, Second Edition PDF full book. Access full book title Gas Turbine Heat Transfer and Cooling Technology, Second Edition by Je-Chin Han. Download full books in PDF and EPUB format.

Gas Turbine Heat Transfer and Cooling Technology, Second Edition

Gas Turbine Heat Transfer and Cooling Technology, Second Edition PDF Author: Je-Chin Han
Publisher: CRC Press
ISBN: 1439855684
Category : Science
Languages : en
Pages : 892

Book Description
A comprehensive reference for engineers and researchers, Gas Turbine Heat Transfer and Cooling Technology, Second Edition has been completely revised and updated to reflect advances in the field made during the past ten years. The second edition retains the format that made the first edition so popular and adds new information mainly based on selected published papers in the open literature. See What’s New in the Second Edition: State-of-the-art cooling technologies such as advanced turbine blade film cooling and internal cooling Modern experimental methods for gas turbine heat transfer and cooling research Advanced computational models for gas turbine heat transfer and cooling performance predictions Suggestions for future research in this critical technology The book discusses the need for turbine cooling, gas turbine heat-transfer problems, and cooling methodology and covers turbine rotor and stator heat-transfer issues, including endwall and blade tip regions under engine conditions, as well as under simulated engine conditions. It then examines turbine rotor and stator blade film cooling and discusses the unsteady high free-stream turbulence effect on simulated cascade airfoils. From here, the book explores impingement cooling, rib-turbulent cooling, pin-fin cooling, and compound and new cooling techniques. It also highlights the effect of rotation on rotor coolant passage heat transfer. Coverage of experimental methods includes heat-transfer and mass-transfer techniques, liquid crystal thermography, optical techniques, as well as flow and thermal measurement techniques. The book concludes with discussions of governing equations and turbulence models and their applications for predicting turbine blade heat transfer and film cooling, and turbine blade internal cooling.

Gas Turbine Heat Transfer and Cooling Technology, Second Edition

Gas Turbine Heat Transfer and Cooling Technology, Second Edition PDF Author: Je-Chin Han
Publisher: CRC Press
ISBN: 1439855684
Category : Science
Languages : en
Pages : 892

Book Description
A comprehensive reference for engineers and researchers, Gas Turbine Heat Transfer and Cooling Technology, Second Edition has been completely revised and updated to reflect advances in the field made during the past ten years. The second edition retains the format that made the first edition so popular and adds new information mainly based on selected published papers in the open literature. See What’s New in the Second Edition: State-of-the-art cooling technologies such as advanced turbine blade film cooling and internal cooling Modern experimental methods for gas turbine heat transfer and cooling research Advanced computational models for gas turbine heat transfer and cooling performance predictions Suggestions for future research in this critical technology The book discusses the need for turbine cooling, gas turbine heat-transfer problems, and cooling methodology and covers turbine rotor and stator heat-transfer issues, including endwall and blade tip regions under engine conditions, as well as under simulated engine conditions. It then examines turbine rotor and stator blade film cooling and discusses the unsteady high free-stream turbulence effect on simulated cascade airfoils. From here, the book explores impingement cooling, rib-turbulent cooling, pin-fin cooling, and compound and new cooling techniques. It also highlights the effect of rotation on rotor coolant passage heat transfer. Coverage of experimental methods includes heat-transfer and mass-transfer techniques, liquid crystal thermography, optical techniques, as well as flow and thermal measurement techniques. The book concludes with discussions of governing equations and turbulence models and their applications for predicting turbine blade heat transfer and film cooling, and turbine blade internal cooling.

Gas Turbine Blade Cooling

Gas Turbine Blade Cooling PDF Author: Chaitanya D Ghodke
Publisher: SAE International
ISBN: 0768095026
Category : Technology & Engineering
Languages : en
Pages : 238

Book Description
Gas turbines play an extremely important role in fulfilling a variety of power needs and are mainly used for power generation and propulsion applications. The performance and efficiency of gas turbine engines are to a large extent dependent on turbine rotor inlet temperatures: typically, the hotter the better. In gas turbines, the combustion temperature and the fuel efficiency are limited by the heat transfer properties of the turbine blades. However, in pushing the limits of hot gas temperatures while preventing the melting of blade components in high-pressure turbines, the use of effective cooling technologies is critical. Increasing the turbine inlet temperature also increases heat transferred to the turbine blade, and it is possible that the operating temperature could reach far above permissible metal temperature. In such cases, insufficient cooling of turbine blades results in excessive thermal stress on the blades causing premature blade failure. This may bring hazards to the engine's safe operation. Gas Turbine Blade Cooling, edited by Dr. Chaitanya D. Ghodke, offers 10 handpicked SAE International's technical papers, which identify key aspects of turbine blade cooling and help readers understand how this process can improve the performance of turbine hardware.

Experimentation, Validation, and Uncertainty Analysis for Engineers

Experimentation, Validation, and Uncertainty Analysis for Engineers PDF Author: Hugh W. Coleman
Publisher: John Wiley & Sons
ISBN: 1119417708
Category : Technology & Engineering
Languages : en
Pages : 404

Book Description
Helps engineers and scientists assess and manage uncertainty at all stages of experimentation and validation of simulations Fully updated from its previous edition, Experimentation, Validation, and Uncertainty Analysis for Engineers, Fourth Edition includes expanded coverage and new examples of applying the Monte Carlo Method (MCM) in performing uncertainty analyses. Presenting the current, internationally accepted methodology from ISO, ANSI, and ASME standards for propagating uncertainties using both the MCM and the Taylor Series Method (TSM), it provides a logical approach to experimentation and validation through the application of uncertainty analysis in the planning, design, construction, debugging, execution, data analysis, and reporting phases of experimental and validation programs. It also illustrates how to use a spreadsheet approach to apply the MCM and the TSM, based on the authors’ experience in applying uncertainty analysis in complex, large-scale testing of real engineering systems. Experimentation, Validation, and Uncertainty Analysis for Engineers, Fourth Edition includes examples throughout, contains end of chapter problems, and is accompanied by the authors’ website www.uncertainty-analysis.com. Guides readers through all aspects of experimentation, validation, and uncertainty analysis Emphasizes the use of the Monte Carlo Method in performing uncertainty analysis Includes complete new examples throughout Features workable problems at the end of chapters Experimentation, Validation, and Uncertainty Analysis for Engineers, Fourth Edition is an ideal text and guide for researchers, engineers, and graduate and senior undergraduate students in engineering and science disciplines. Knowledge of the material in this Fourth Edition is a must for those involved in executing or managing experimental programs or validating models and simulations.

Impingement Jet Cooling in Gas Turbines

Impingement Jet Cooling in Gas Turbines PDF Author: R.S. Amano
Publisher: WIT Press
ISBN: 1845649060
Category : Science
Languages : en
Pages : 253

Book Description
Due to the requirement for enhanced cooling technologies on modern gas turbine engines, advanced research and development has had to take place in field of thermal engineering. Among the gas turbine cooling technologies, impingement jet cooling is one of the most effective in terms of cooling effectiveness, manufacturability and cost. The chapters contained in this book describe research on state-of-the-art and advanced cooling technologies that have been developed, or that are being researched, with a variety of approaches from theoretical, experimental, and CFD studies. The authors of the chapters have been selected from some of the most active researchers and scientists on the subject. This is the first to book published on the topics of gas turbines and heat transfer to focus on impingement cooling alone.

Advances in Heat Transfer

Advances in Heat Transfer PDF Author:
Publisher: Academic Press
ISBN: 0128124121
Category : Technology & Engineering
Languages : en
Pages : 336

Book Description
Advances in Heat Transfer, Volume 49 provides in-depth review articles from a broader scope than in traditional journals or texts. Topics covered in this new volume include Heat Transfer in Rotating Cooling Channel, Flow Boiling and Flow Condensation in Reduced Gravity, Advances in Gas Turbine Cooling, and Advanced Heat Transfer Topics in Complex Duct Flows. While the articles in this series will be of great interest to mechanical, chemical and industrial engineers working in the field of heat transfer, the book is also ideal for those in graduate schools or industry, and even non-specialists interested in the latest research. - Compiles the expert opinions of leaders in the industry - Fills the information gap between regularly scheduled journals and university-level textbooks by providing in-depth review articles over a broader scope than in traditional journals or texts - Essential reading for all mechanical, chemical and industrial engineers working in the field of heat transfer, or in graduate schools or industry

Scientific and Technical Aerospace Reports

Scientific and Technical Aerospace Reports PDF Author:
Publisher:
ISBN:
Category : Aeronautics
Languages : en
Pages : 994

Book Description


NASA Technical Memorandum

NASA Technical Memorandum PDF Author:
Publisher:
ISBN:
Category : Aeronautics
Languages : en
Pages : 492

Book Description


Analysis and Comparison of Wall Cooling Schemes for Advanced Gas Turbine Applications

Analysis and Comparison of Wall Cooling Schemes for Advanced Gas Turbine Applications PDF Author: Raymond Strong Colladay
Publisher:
ISBN:
Category : Cooling
Languages : en
Pages : 52

Book Description
The relative performance of (1) counterflow film cooling, (2) parallel-flow film cooling, (3) convection cooling, (4) adiabatic film cooling, (5) transpiration cooling, and (6) full-coverage film cooling was investigated for heat loading conditions expected in future gas turbine engines. Assumed in the analysis were hot-gas conditions of 2200 K (3500 F) recovery temperature, 5 to 40 atmospheres total pressure, and 0.6 gas Mach number and a cooling air supply temperature of 811 K (1000 F). The first three cooling methods involve film cooling from slots. Counterflow and parallel flow describe the direction of convection cooling air along the inside surface of the wall relative to the main gas flow direction. The importance of utilizing the heat sink available in the coolant for convection cooling prior to film injection is illustrated.

When AIAA Meets IEEE

When AIAA Meets IEEE PDF Author: Franklin Li Duan
Publisher: Springer Nature
ISBN: 9811983941
Category : Technology & Engineering
Languages : en
Pages : 384

Book Description
This book is about the cooperation of AIAA and IEEE, two major engineering organizations from two distinct focus points of technologies: intelligent aero-engine and electrified aviation. AIAA and IEEE both have their intrinsic needs for each other and their co-working is a must-have in the rest of 21st century. AIAA needs IEEE to become smarter and greener and IEEE needs a much broader scope to enlarge its marketplace and playground. The topics related to AIAA's and IEEE's co-project are highly multi- and inter-disciplinary related and highly goal-oriented. The target audience of this book is IEEE, AIAA members and other related professionals from universities, industries and institutes in the fields of AI-driven smart systems and electric airplanes with the associated new electric aero-engines and mobile aviation electric powers. The key contents When AIAA is Meeting IEEE AIAA vs. IEEE How to interact and what to achieve The mindset analysis of AIAA and IEEE The smarter AIAA The AI - Smart brain, IoT, e-devices The smart sensors for AIAA -scenarios, fabrication, challenges, and testings Electric aviation Versatile, smarter, and green The evolution of aero-engines - pistol, gas turbine, electric aero-engine The integration of aero-engines and aero-craft Delta VTOLer and STOL for B787 Rotatable wing and VTOL operation The RDF jet – a new electric aero-engine The features: small, light, thrust The architecture: motor, fan, jet The principle: rim driven, Tai Chi fan, duct, and jet Aviation electric power grid Energy and weight Battery, LTG, and 3D HK SC

Advanced Technologies for Gas Turbines

Advanced Technologies for Gas Turbines PDF Author: National Academies of Sciences, Engineering, and Medicine
Publisher: National Academies Press
ISBN: 0309664225
Category : Science
Languages : en
Pages : 137

Book Description
Leadership in gas turbine technologies is of continuing importance as the value of gas turbine production is projected to grow substantially by 2030 and beyond. Power generation, aviation, and the oil and gas industries rely on advanced technologies for gas turbines. Market trends including world demographics, energy security and resilience, decarbonization, and customer profiles are rapidly changing and influencing the future of these industries and gas turbine technologies. Technology trends that define the technological environment in which gas turbine research and development will take place are also changing - including inexpensive, large scale computational capabilities, highly autonomous systems, additive manufacturing, and cybersecurity. It is important to evaluate how these changes influence the gas turbine industry and how to manage these changes moving forward. Advanced Technologies for Gas Turbines identifies high-priority opportunities for improving and creating advanced technologies that can be introduced into the design and manufacture of gas turbines to enhance their performance. The goals of this report are to assess the 2030 gas turbine global landscape via analysis of global leadership, market trends, and technology trends that impact gas turbine applications, develop a prioritization process, define high-priority research goals, identify high-priority research areas and topics to achieve the specified goals, and direct future research. Findings and recommendations from this report are important in guiding research within the gas turbine industry and advancing electrical power generation, commercial and military aviation, and oil and gas production.