Experimental and numerical investigation of ductile fracture initiation at low, intermediate and high strain rates PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Experimental and numerical investigation of ductile fracture initiation at low, intermediate and high strain rates PDF full book. Access full book title Experimental and numerical investigation of ductile fracture initiation at low, intermediate and high strain rates by Christian C.. Roth. Download full books in PDF and EPUB format.

Experimental and numerical investigation of ductile fracture initiation at low, intermediate and high strain rates

Experimental and numerical investigation of ductile fracture initiation at low, intermediate and high strain rates PDF Author: Christian C.. Roth
Publisher:
ISBN:
Category :
Languages : fr
Pages : 0

Book Description
Cette thèse porte sur l'effet du taux de déformation sur l'initiation de la rupture ductile des métaux dans les aciers avancés à haute résistance (AHSS). Une analyse détaillée de la plasticité des AHSS (effet de la température et au taux de déformation) est requise, ainsi que la caractérisation de l'effet de l'état des contraintes. Les principaux résultats de cette thèse sont : (i) des essais novateurs pour déterminer la déformation à rupture dans les toles sous chargement proportionnel pour des chargements allant du cisaillement pur à la traction équi-biaxiale (ii) le développement d'une technique expérimentale permettant de réaliser des essais à rupture sur toles avec des barres de Hopkinson (SPHB) (iii)) un modèle de plasticité en grandes déformations incluant la dépendance au taux de déformation et à la température (iv) un modèle d'initiation de la rupture ductile dépendant du taux de déformation et (v) des observations micrographiques montrant une augmentation significative de la localisation de déformation à de forts taux de déformation. Outre une introduction générale, des conclusions, et un chapitre de perspectives, la thèse comprend quatre chapitres principaux: Dans le premier chapitre, un programme basique d'essais à rupture pour les toles est développé afin de caractériser l'amorce de la rupture ductile sous différents états de contraintes. Une éprouvette plane comportant deux sections utiles paralèlles est proposée pour déterminer la déformation à rupture pour des états de contraintes proches du cisaillement pur. Une méthodologie basée sur des simulations EF est développée pour optimiser la géométrie de l'éprouvette en fonction de la ductilité du matériau et de son écrouissage. Une éprouvette de traction trouée est optimisée pour déterminer la ductilité en traction uniaxiale. La déformation plane est étudiée par flexion d'une large bande, tandis qu'un essai de poinçonnement miniature est utilisé pour la traction equi-biaxiale. Dans un deuxième chapitre, un système d'inversion est développé pour des essais de traction à de forts taux de déformations avec des SPHB. Une barre de sortie située au-dessus de la barre d'entrée permet de mesurer l'effort de traction, tandis que le déplacement de l'éprouvette est mesuré par caméra rapide. Cette configuration permet une durée d'essais deux fois plus long qu'un système conventionnel de Kolsky, et des essais à des taux intermédiaires (~100/s) sans augmenter la longueur totale du système. Dans un troisième chapitre, des essais de traction à divers taux de déformation sont réalisés sur des éprouvettes plates lisses, entaillées et trouées. La rupture est précédée d'une striction. Une approche hybride expérimentale et numérique est utilisée pour calculer la déformation à rupture. Une dépendance au taux de déformation et à la température de type Johnson-Cook avec un écrouissage combiné Swift-Voce est utilisée avec une loi d'écoulement anisotrope non-associée pour décrire précisément les champs locaux de déformation. Les variations de tempréatures ne sont pas calculées en résolvant le problème thermo-mécanique complet, mais au moyen d'une fonction de poids dépendant du taux de déformation. Ces résultats sont ensuite utilisés pour calibrer et valider une extension récente du modèle d'initiation de rupture d'Hosford-Coulomb, prenant en compte l'effet du taux de déformation. Dans un quatrième chapitre, des essais sur éprouvettes de cisaillement sont réalisés pour une large gamme de température et de taux de déformation. La déformation de l'éprouvette est soigneusement analysée par corrélation d'images numériques et par une approche hybride expérimentale et numérique. Des analyses EBSD sont réalisées sous la surface de rupture, mettant en évidence l'influence de la vitesse de chargement sur la déformation de la microstructure.

Experimental and numerical investigation of ductile fracture initiation at low, intermediate and high strain rates

Experimental and numerical investigation of ductile fracture initiation at low, intermediate and high strain rates PDF Author: Christian C.. Roth
Publisher:
ISBN:
Category :
Languages : fr
Pages : 0

Book Description
Cette thèse porte sur l'effet du taux de déformation sur l'initiation de la rupture ductile des métaux dans les aciers avancés à haute résistance (AHSS). Une analyse détaillée de la plasticité des AHSS (effet de la température et au taux de déformation) est requise, ainsi que la caractérisation de l'effet de l'état des contraintes. Les principaux résultats de cette thèse sont : (i) des essais novateurs pour déterminer la déformation à rupture dans les toles sous chargement proportionnel pour des chargements allant du cisaillement pur à la traction équi-biaxiale (ii) le développement d'une technique expérimentale permettant de réaliser des essais à rupture sur toles avec des barres de Hopkinson (SPHB) (iii)) un modèle de plasticité en grandes déformations incluant la dépendance au taux de déformation et à la température (iv) un modèle d'initiation de la rupture ductile dépendant du taux de déformation et (v) des observations micrographiques montrant une augmentation significative de la localisation de déformation à de forts taux de déformation. Outre une introduction générale, des conclusions, et un chapitre de perspectives, la thèse comprend quatre chapitres principaux: Dans le premier chapitre, un programme basique d'essais à rupture pour les toles est développé afin de caractériser l'amorce de la rupture ductile sous différents états de contraintes. Une éprouvette plane comportant deux sections utiles paralèlles est proposée pour déterminer la déformation à rupture pour des états de contraintes proches du cisaillement pur. Une méthodologie basée sur des simulations EF est développée pour optimiser la géométrie de l'éprouvette en fonction de la ductilité du matériau et de son écrouissage. Une éprouvette de traction trouée est optimisée pour déterminer la ductilité en traction uniaxiale. La déformation plane est étudiée par flexion d'une large bande, tandis qu'un essai de poinçonnement miniature est utilisé pour la traction equi-biaxiale. Dans un deuxième chapitre, un système d'inversion est développé pour des essais de traction à de forts taux de déformations avec des SPHB. Une barre de sortie située au-dessus de la barre d'entrée permet de mesurer l'effort de traction, tandis que le déplacement de l'éprouvette est mesuré par caméra rapide. Cette configuration permet une durée d'essais deux fois plus long qu'un système conventionnel de Kolsky, et des essais à des taux intermédiaires (~100/s) sans augmenter la longueur totale du système. Dans un troisième chapitre, des essais de traction à divers taux de déformation sont réalisés sur des éprouvettes plates lisses, entaillées et trouées. La rupture est précédée d'une striction. Une approche hybride expérimentale et numérique est utilisée pour calculer la déformation à rupture. Une dépendance au taux de déformation et à la température de type Johnson-Cook avec un écrouissage combiné Swift-Voce est utilisée avec une loi d'écoulement anisotrope non-associée pour décrire précisément les champs locaux de déformation. Les variations de tempréatures ne sont pas calculées en résolvant le problème thermo-mécanique complet, mais au moyen d'une fonction de poids dépendant du taux de déformation. Ces résultats sont ensuite utilisés pour calibrer et valider une extension récente du modèle d'initiation de rupture d'Hosford-Coulomb, prenant en compte l'effet du taux de déformation. Dans un quatrième chapitre, des essais sur éprouvettes de cisaillement sont réalisés pour une large gamme de température et de taux de déformation. La déformation de l'éprouvette est soigneusement analysée par corrélation d'images numériques et par une approche hybride expérimentale et numérique. Des analyses EBSD sont réalisées sous la surface de rupture, mettant en évidence l'influence de la vitesse de chargement sur la déformation de la microstructure.

Ductile Fracture After Complex Loading Histories

Ductile Fracture After Complex Loading Histories PDF Author: Stephane Jean Marie Marcadet
Publisher:
ISBN:
Category :
Languages : en
Pages : 173

Book Description
In engineering practice, sheet metal often fails after complex strain paths that deviate substantially from the widely studied proportional loading paths. Different from previous works on the ductile fracture of sheet metal, this thesis research addresses the experimental and modeling issues related to the crack initiation in advanced high strength steels after loading direction reversal. The main outcome of the present work is a fracture initiation model for proportional and non-proportional loading. The starting point of this thesis is a first chapter on the development of a micromechanically-motivated ductile fracture initiation model for metals for proportional loading. Its formulation is based on the assumption that the onset of fracture is imminent with the formation of a primary or secondary band of localization. Motivated by the results from a thorough unit cell analysis, it is assumed that fracture initiates after proportional loading if the linear combination of the Hosford equivalent stress and the normal stress acting on the plane of maximum shear reaches a critical value. A comprehensive fracture initiation model is then obtained after transforming the localization criterion from the stress space to the space of equivalent plastic strain, stress triaxiality and Lode angle parameter using the material's isotropic hardening law. Experimental results are presented for three different advanced high strength steels. For each material, the onset of fracture is characterized for five distinct stress states, including butterfly shear, notched tension, tension with a central hole, and punch experiments. The comparison of model predictions with the experimental results demonstrates that the proposed Hosford-Coulomb model can predict with satisfactory accuracy the instant of ductile fracture initiation in advanced high strength steels. In a subsequent chapter, experimental methods are developed to perform compression tension experiments. In addition, a finite strain constitutive model is proposed combining a Swift-Voce isotropic hardening law with two Frederick-Armstrong kinematic hardening rules and a Yoshida-Uemori type of hardening stagnation approach. The plasticity model parameters are identified from uniaxial tension-compression stress-strain curve measurements and finite element simulations of compression-tension experiments on notched specimens. The model predictions are validated through comparison with experimentally-measured load-displacement curves up to the onset of fracture, local surface strain measurements and longitudinal thickness profiles. The extracted loading paths to fracture show a significant increase in ductility as a function of the compressive pre-strain. The Hosford-Coulomb model is therefore integrated into a non-linear damage indicator modeling framework to provide a phenomenological description of the experimental results for monotonic and reverse loading. Another extension of the modeling framework is presented in a third chapter inspired by the results from loss of ellipticity analysis. It is demonstrated that the Hosford-Coulomb model can also be expressed in terms of a stress-state dependent critical hardening rate. Moreover, it is shown that the critical hardening rate approach provides accurate predictions of the instant of fracture initiation for both proportional and non-proportional loading conditions. Enhancements of the finite strain constitutive model are also proposed to enable a fast identification of all model parameters. The plasticity model parameters are identified from stress-strain curve measurements from shear loading reversal on specimens with a uniform thickness reduced gage section. The model is used to estimate the local strain and stress fields in fracture experiments after shear reversal. The extracted loading paths to fracture show a significant increase in ductility as a function of the strain at shear reversal, a feature that is readily predicted by the prosed critical hardening rate model.

Experimental and Numerical Analysis of Ductile Fracture Under Multiaxial Loading

Experimental and Numerical Analysis of Ductile Fracture Under Multiaxial Loading PDF Author: Jessica Papasidero
Publisher:
ISBN:
Category :
Languages : en
Pages : 147

Book Description


Experimental and Numerical Investigation of Formability and Ductile Fracture in Incremental Sheet Forming

Experimental and Numerical Investigation of Formability and Ductile Fracture in Incremental Sheet Forming PDF Author: Shakir Madhloom Gatea
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description


Numerical Prediction of Ductile Fracture Due to Moving Load

Numerical Prediction of Ductile Fracture Due to Moving Load PDF Author: Md Abdullah
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description
This study investigates the effect of moving load on ductile fracture of shipbuilding metals through numerical simulation. Quinton [1,2] and Alsos [3] investigated moving load's effect on metals, in the plastic regime, and found that moving load results in a significant reduction in plastic capacity of metals. This study complements their work by extending the scope of the work up to ductile fracture initiation which was accomplished by implementing state-of-art ductile fracture model in moving loading scenario. A state-of-art ductile fracture model has been implemented in this study by incorporating the knowledge acquired by research in the fracture mechanics arena. A stress state based fracture locus with strain rate and temperature effects has been selected as the ductile fracture criteria accordingly. Finite Element Method with Explicit Time Integration scheme deemed appropriate for numerical simulation and LS-DYNA has been chosen to accomplish this consequently. This study attempts to mitigate two significant limitations of maritime structural assessment techniques associated with ship-ice interaction; undue simplification of load definition and over conservatism on fracture strain selection. Ship-ice interaction is considered as stationary loading scenario while it should be categorised as moving loading condition in accidental overloading situations. In addition, these techniques also regard fracture strain to be constant and independent of stress state, whereas studies show that ductile fracture initiation is highly dependent on the stress state. This study provides a method to incorporate stress-state dependent state-of-art ductile fracture model for numerical investigation of moving load.

Studies on Strain Localization, Ductile Fracture and Damage in Structural Metals

Studies on Strain Localization, Ductile Fracture and Damage in Structural Metals PDF Author: Yazhi Zhu
Publisher:
ISBN:
Category :
Languages : en
Pages : 666

Book Description
One of the most important limit states in structural metals is ductile fracture, and the prediction of ductile fracture is of great importance in many engineering applications. The overall objective of the research reported in this dissertation is to advance the understanding and modeling of ductile fracture in metals. This research addresses three main issues: micromechanical modeling of ductile fracture, the development of a micromechanics-based ductile fracture model and its numerical implementation, and a numerical investigation of geometry and damage induced strain localization based on a nonlocal formulation. It has long been recognized that stress triaxiality is a key parameter affecting initiation of ductile fracture. More recently, shear stress has been identified as another important parameter, in addition to stress triaxiality, that influences the process of ductile fracture. In this research, a micromechanics-based model is proposed for predicting initiation of ductile fracture that couples both stress triaxiality and shear stress. The new model is based on a combination of the existing Rice-Tracey and modified maximum shear stress models. The new model is applied to construct the fracture locus of different types of metal alloys and is used to predict fracture initiation by numerical tools. The predicted results are in good agreement with experimental data reported in literature that covers a wide range of triaxialities and shear stress. Another portion of this research, within the framework of micromechanics, investigated the effect of combined normal and shear stress components on micro-void evolution and material behavior. This work involved finite element modeling of a cubic unit cell associated with a spherical void. The results show that the void growth process and macroscopic stress-strain response is highly dependent on the shear stress component. At different ranges of triaxialities, and with different void growth and coalescence mechanisms, shear stress has an important effect on the ductile fracture process. Numerical modeling of strain localization in ductile metals based on standard continuum mechanics exhibits non-convergent mesh sensitivity. This issue is addressed in the final portion of this research. A one-dimensional model based on the nonlocal theory is proposed to analyze geometry-induced strain localization, i.e., necking in structural metals. A nonlocal continuum damage model using the same enhanced continuum law is developed to deal with the damage induced strain localization in metals. Both models provide encouraging performance in eliminating the non-convergent mesh sensitivity problem. Such improved strain localization modeling techniques show potential to be useful for further exploration of ductile fracture phenomena.

Ductile Fracture at Intermediate Stress Triaxialities

Ductile Fracture at Intermediate Stress Triaxialities PDF Author: Matthieu Dunand
Publisher:
ISBN:
Category :
Languages : en
Pages : 256

Book Description
Accurate predictions of the onset of ductile fracture play an increasingly important role in the design of lightweight sheet metal structures. With the development of virtual prototyping practices, most transportation vehicles are now computer-engineered in great detail before launching their mass production, thereby requiring reliable models for plasticity and fracture. This thesis reports on a comprehensive investigation into the effect of stress state on the onset of ductile fracture of an Advanced High Strength Steel (AHSS), covering development of new experimental procedures, material characterization and phenomenological as well as micro-mechanical modeling of the onset of fracture. Based on an extensive multi-axial experimental program, the anisotropic plasticity of the present material is described by a non-associated quadratic anisotropic model. Comparison of model predictions to experimental results reveals that the proposed model provides better predictions than associated isotropic or anisotropic quadratic models. Moreover, a structural validation is presented that demonstrates the higher prediction accuracy of the non-associated plasticity model. A hybrid experimental-numerical approach is proposed to investigate the dependence of the onset of fracture to stress state. The experimental program covers the complete range of positive stress triaxialities, from pure shear to equibiaxial tension. It includes different full thickness specimens as well as multi-axial fracture experiments where combinations of tension and shear loadings are applied to a newly developed butterfly-shaped specimen. Loading paths to fracture are determined for each experiment in terms of stress triaxiality, Lode angle parameter and equivalent plastic strain and show a non-monotonic and strong dependence of ductility to stress state. The extensive fracture characterization is used to evaluate the predictive capabilities of two phenomenological and physics-inspired fracture models (the Modified Mohr-Coulomb and a shear-modified Gurson model) that take the effect of the first and third stress tensor invariants into account in predicting the onset of fracture. Finally, a micro-mechanical model relating the onset of fracture to plastic localization into a narrow band at the micro-scale is developed. The effect of stress state on localization is investigated numerically by means of a 3D void-containing unit cell submitted to well-controlled and proportional loadings in the macroscopic stress state. Based on simulation results, an analytical localization criterion is proposed which defines an open convex envelope in terms of the shear and normal stresses acting on the plane of localization and correlates well with experimental results.

Experimental and Numerical Studies of Metal Deformation and Fracture at High Strain Rates

Experimental and Numerical Studies of Metal Deformation and Fracture at High Strain Rates PDF Author: G. H. Majzoobi
Publisher:
ISBN:
Category : Metals
Languages : en
Pages : 576

Book Description


Deformation and Fracture in Materials

Deformation and Fracture in Materials PDF Author: Anoop Kumar Mukhopadhyay
Publisher: CRC Press
ISBN: 1040104606
Category : Technology & Engineering
Languages : en
Pages : 373

Book Description
This book provides information on the basics of deformation and fracture in materials and on current, state-of-the-art experimental and numerical/theoretical methods, including data-driven approaches in the deformation and fracture study of materials. The blend of experimental test methods and numerical techniques to study deformation and fracture in materials is discussed. In addition, the application of data-driven approaches in predicting material performance in different types of loading and loading environments is illustrated. Features: Includes clear insights on deformation and fracture in materials, with clear explanations of mechanics and defects relating to them Provides effective treatments of modern numerical simulation methods Explores applications of data-driven approaches such as artificial intelligence, machine learning, and computer vision Reviews simple and basic experimental techniques to understand the concepts of deformation and fracture in materials Details modeling and simulation strategies of mechanics of materials at different scales This book is aimed at researchers and graduate students in fracture mechanics, finite element methods, and materials science.

Fracture Mechanics

Fracture Mechanics PDF Author: Satya N. Atluri
Publisher: ASTM International
ISBN: 0803114400
Category : Elasticity
Languages : en
Pages : 448

Book Description
Papers of the June 1990 meeting held in Atlanta, Ga. The first volume (47 papers) concentrates on experimental and theoretical aspects of fracture mechanics. Volume two (26 papers) covers numerical and computational approaches. Topics include: ductile fracture, high-temperature and time-dependent fr