EXPERIMENTAL AND COMPUTATIONAL INVESTIGATION OF DUAL FUEL DIESEL- NATURAL GAS RCCI COMBUSTION IN A HEAVY-DUTY DIESEL ENGINE PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download EXPERIMENTAL AND COMPUTATIONAL INVESTIGATION OF DUAL FUEL DIESEL- NATURAL GAS RCCI COMBUSTION IN A HEAVY-DUTY DIESEL ENGINE PDF full book. Access full book title EXPERIMENTAL AND COMPUTATIONAL INVESTIGATION OF DUAL FUEL DIESEL- NATURAL GAS RCCI COMBUSTION IN A HEAVY-DUTY DIESEL ENGINE by . Download full books in PDF and EPUB format.

EXPERIMENTAL AND COMPUTATIONAL INVESTIGATION OF DUAL FUEL DIESEL- NATURAL GAS RCCI COMBUSTION IN A HEAVY-DUTY DIESEL ENGINE

EXPERIMENTAL AND COMPUTATIONAL INVESTIGATION OF DUAL FUEL DIESEL- NATURAL GAS RCCI COMBUSTION IN A HEAVY-DUTY DIESEL ENGINE PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description
Abstract : Among the various alternative fuels, natural gas is considered as a leading candidate for heavy-duty applications due to its availability and applicability in conventional internal combustion diesel engines. Compared to their diesel counterparts natural gas fueled spark-ignited engines have a lower power density, reduced low-end torque capability, limited altitude performance, and ammonia emissions downstream of the three-way catalyst. The dual fuel diesel/natural gas engine does not suffer with the performance limitations of the spark-ignited concept due to the flexibility of switching between different fueling modes. Considerable research has already been conducted to understand the combustion behavior of dual fuel diesel/natural gas engines. As reported by most researchers, the major difficulty with dual fuel operation is the challenge of providing high levels of natural gas substitution, especially at low and medium loads. In this study extensive experimental and simulation studies were conducted to understand the combustion behavior of a heavy-duty diesel engine when operated with compressed natural gas (CNG) in a dual fuel regime. In one of the experimental studies, conducted on a 13 liter heavy-duty six cylinder diesel engine with a compression ratio of 16.7:1, it was found that at part loads high levels of CNG substitution could be achieved along with very low NOx and PM emissions by applying reactivity controlled compression ignition (RCCI) combustion. When compared to the diesel-only baseline, a 75% reduction in both NOx and PM emissions was observed at a 5 bar BMEP load point along with comparable fuel consumption values. Further experimental studies conducted on the 13 liter heavy-duty six cylinder diesel engine have shown that RCCI combustion targeting low NOx emissions becomes progressively difficult to control as the load is increased at a given speed or the speed is reduced at a given load. To overcome these challenges a number of simulation studies were conducted to quantify the in-cylinder conditions that are needed at high loads and low to medium engine speeds to effectively control low NOx RCCI combustion. A number of design parameters were analyzed in this study including exhaust gas recirculation (EGR) rate, CNG substitution, injection strategy, fuel injection pressure, fuel spray angle and compression ratio. The study revealed that lowering the compression ratio was very effective in controlling low NOx RCCI combustion. By lowering the base compression ratio by 4 points, to 12.7:1, a low NOx RCCI combustion was achieved at both 12 bar and 20 bar BMEP load points. The NOx emissions were reduced by 75% at 12 bar BMEP while fuel consumption was improved by 5.5%. For the 20 BMEP case, a 2% improvement in fuel consumption was achieved with an 87.5% reduction in NOx emissions. At both load points low PM emissions were observed with RCCI combustion. A low NOx RCCI combustion system has multiple advantages over other combustion approaches, these include; significantly lower NOx and PM emission which allows a reduction in aftertreatment cost and packaging requirements along with application of higher CNG substitution rates resulting in reduced CO2 emissions.

EXPERIMENTAL AND COMPUTATIONAL INVESTIGATION OF DUAL FUEL DIESEL- NATURAL GAS RCCI COMBUSTION IN A HEAVY-DUTY DIESEL ENGINE

EXPERIMENTAL AND COMPUTATIONAL INVESTIGATION OF DUAL FUEL DIESEL- NATURAL GAS RCCI COMBUSTION IN A HEAVY-DUTY DIESEL ENGINE PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description
Abstract : Among the various alternative fuels, natural gas is considered as a leading candidate for heavy-duty applications due to its availability and applicability in conventional internal combustion diesel engines. Compared to their diesel counterparts natural gas fueled spark-ignited engines have a lower power density, reduced low-end torque capability, limited altitude performance, and ammonia emissions downstream of the three-way catalyst. The dual fuel diesel/natural gas engine does not suffer with the performance limitations of the spark-ignited concept due to the flexibility of switching between different fueling modes. Considerable research has already been conducted to understand the combustion behavior of dual fuel diesel/natural gas engines. As reported by most researchers, the major difficulty with dual fuel operation is the challenge of providing high levels of natural gas substitution, especially at low and medium loads. In this study extensive experimental and simulation studies were conducted to understand the combustion behavior of a heavy-duty diesel engine when operated with compressed natural gas (CNG) in a dual fuel regime. In one of the experimental studies, conducted on a 13 liter heavy-duty six cylinder diesel engine with a compression ratio of 16.7:1, it was found that at part loads high levels of CNG substitution could be achieved along with very low NOx and PM emissions by applying reactivity controlled compression ignition (RCCI) combustion. When compared to the diesel-only baseline, a 75% reduction in both NOx and PM emissions was observed at a 5 bar BMEP load point along with comparable fuel consumption values. Further experimental studies conducted on the 13 liter heavy-duty six cylinder diesel engine have shown that RCCI combustion targeting low NOx emissions becomes progressively difficult to control as the load is increased at a given speed or the speed is reduced at a given load. To overcome these challenges a number of simulation studies were conducted to quantify the in-cylinder conditions that are needed at high loads and low to medium engine speeds to effectively control low NOx RCCI combustion. A number of design parameters were analyzed in this study including exhaust gas recirculation (EGR) rate, CNG substitution, injection strategy, fuel injection pressure, fuel spray angle and compression ratio. The study revealed that lowering the compression ratio was very effective in controlling low NOx RCCI combustion. By lowering the base compression ratio by 4 points, to 12.7:1, a low NOx RCCI combustion was achieved at both 12 bar and 20 bar BMEP load points. The NOx emissions were reduced by 75% at 12 bar BMEP while fuel consumption was improved by 5.5%. For the 20 BMEP case, a 2% improvement in fuel consumption was achieved with an 87.5% reduction in NOx emissions. At both load points low PM emissions were observed with RCCI combustion. A low NOx RCCI combustion system has multiple advantages over other combustion approaches, these include; significantly lower NOx and PM emission which allows a reduction in aftertreatment cost and packaging requirements along with application of higher CNG substitution rates resulting in reduced CO2 emissions.

A computational and experimental study on combustion processes in natural gas/diesel dual fuel engines

A computational and experimental study on combustion processes in natural gas/diesel dual fuel engines PDF Author: Andrew Hockett
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Book Description


Advances in Compression Ignition Natural Gas – Diesel Dual Fuel Engines

Advances in Compression Ignition Natural Gas – Diesel Dual Fuel Engines PDF Author: Hongsheng Guo
Publisher: Frontiers Media SA
ISBN: 2889666212
Category : Technology & Engineering
Languages : en
Pages : 125

Book Description


Advances in Internal Combustion Engine Research

Advances in Internal Combustion Engine Research PDF Author: Dhananjay Kumar Srivastava
Publisher: Springer
ISBN: 9811075751
Category : Technology & Engineering
Languages : en
Pages : 346

Book Description
This book discusses all aspects of advanced engine technologies, and describes the role of alternative fuels and solution-based modeling studies in meeting the increasingly higher standards of the automotive industry. By promoting research into more efficient and environment-friendly combustion technologies, it helps enable researchers to develop higher-power engines with lower fuel consumption, emissions, and noise levels. Over the course of 12 chapters, it covers research in areas such as homogeneous charge compression ignition (HCCI) combustion and control strategies, the use of alternative fuels and additives in combination with new combustion technology and novel approaches to recover the pumping loss in the spark ignition engine. The book will serve as a valuable resource for academic researchers and professional automotive engineers alike.

Experimental and Numerical Study of the Combustion and Emissions of Natural Gas/diesel Dual-fuel Engine Under Different Engine Load-speed Conditions

Experimental and Numerical Study of the Combustion and Emissions of Natural Gas/diesel Dual-fuel Engine Under Different Engine Load-speed Conditions PDF Author: Amin Yousefi
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Book Description
Universal concerns about degradation in air quality, stringent emissions regulations, energy scarcity, and global warming have prompted research and development of compressed ignition engines using alternative combustion concepts. Natural gas/diesel dual-fuel combustion is an advanced combustion concept for compression ignition diesel engines, which has attracted global attention in recent years. This combustion concept is accomplished by creating reactivity stratification in the cylinder via the use of two fuels characterized by distinctly different reactivities. The low reactivity and main fuel (i.e., natural gas) is firstly premixed with air and then charged into the cylinder through the intake manifold, and the high reactivity fuel (i.e., diesel) is then injected into the charged mixture through a direct injector. This combustion concept offers prominent benefits in terms of a significant reduction of particulate matter (PM) and sometimes nitrogen oxides (NOx) emissions while maintaining comparable fuel efficiency compared to diesel engine. However, low thermal efficiency and high greenhouse gas (GHG) emissions under low load conditions are major challenges which prevented the implementation of dual-fuel concept in commercial automative engines. The present study investigates different combustion approaches with the aim to enhance combustion performance and reduce emissions of unburned methane, CO, NOx, soot, and GHG of natural gas/diesel dual-fuel engines under different engine load-speed conditions. In particular, the main focus of this thesis is on low load conditions where GHG emissions of conventional natural gas/diesel dual-fuel engine is much higher than that of conventional diesel engine. Alongside the experimental study, a computational fluid dynamic (CFD) model is developed to help understand the behaviour of natural gas/diesel dual-fuel combustion process under different engine load-speed conditions. The studied approaches showed that the fuel efficiency and GHG emissions of natural gas/diesel dual-fuel engine can be significantly improved under low engine load conditions compared to diesel engine.

Advances in Engine and Powertrain Research and Technology

Advances in Engine and Powertrain Research and Technology PDF Author: Tigran Parikyan
Publisher: Springer Nature
ISBN: 3030918696
Category : Technology & Engineering
Languages : en
Pages : 417

Book Description
The book covers a wide range of applied research compactly presented in one volume, and shows innovative engineering solutions for automotive, marine and aviation industries, as well as power generation. While targeting primarily the audience of professional scientists and engineers, the book can also be useful for graduate students, and also for all those who are relatively new to the area and are looking for a single source with a good overview of the state-of-the-art as well as an up-to-date information on theories, numerical methods, and their application in design, simulation, testing, and manufacturing. The readers will find here a rich mixture of approaches, software tools and case studies used to investigate and optimize diverse powertrains, their functional units and separate machine parts based on different physical phenomena, their mathematical representation, solution algorithms, and experimental validation.

Numerical Simulation of Combustion and Unburnt Products in Dual-fuel Compression-ignition Engines with Multiple Injection

Numerical Simulation of Combustion and Unburnt Products in Dual-fuel Compression-ignition Engines with Multiple Injection PDF Author: Arash Jamali
Publisher:
ISBN:
Category :
Languages : en
Pages : 124

Book Description
Natural gas substitution for diesel can result in significant reduction in pollutant emissions. Based on current fuel price projections, operating costs would be lower. With a high ignition temperature and relatively low reactivity, natural gas can enable promising approaches to combustion engine design. In particular, the combination of low reactivity natural gas and high reactivity diesel may allow for optimal operation as a reactivity-controlled compression ignition (RCCI) engine, which has potential for high efficiency and low emissions. In this computational study, a lean mixture of natural gas is ignited by direct injection of diesel fuel in a model of the heavy-duty CAT3401 diesel engine. Dual-fuel combustion of natural gas-diesel (NGD) may provide a wider range of reactivity control than other dual-fuel combustion strategies such as gasoline-diesel dual fuel. Accurate and efficient combustion modeling can aid NGD dual-fuel engine control and optimization. In this study, multi-dimensional simulation was performed using a nite-volume computational code for fuel spray, combustion and emission processes. Adaptive mesh refinement (AMR) and multi-zone reaction modeling enables simulation in a reasonable time. The latter approach avoids expensive kinetic calculations in every computational cell, with considerable speedup. Two approaches to combustion modeling are used within the Reynolds averaged Navier-Stokes (RANS) framework. The first approach uses direct integration of the detailed chemistry and no turbulence-chemistry interaction modeling. The model produces encouraging agreement between the simulation and experimental data. For reasonable accuracy and computation cost, a minimum cell size of 0.2 millimeters is suggested for NGD dual-fuel engine combustion. In addition, the role of different chemical reaction mechanism on the NGD dual-fuel combustion is considered with this model. This work considers fundamental questions regarding combustion in NGD dual-fuel combustion, particularly about how and where fuels react, and the difference between combustion in the dual fuel mode and conventional diesel mode. The results show that in part-load working condition main part of CH4 cannot burn and it has significant effect in high level of HC emission in NGD dual-fuel engine. The CFD results reveal that homogeneous mixture of CH4 and air is too lean, and it cannot ignite in regions that any species from C7H16 chemical mechanism does not exist. It is shown that multi-injection of diesel fuel with an early main injection can reduce HC emission significantly in the NGD dual-fuel engine. In addition, the results reveal that increasing the air fuel ratio by decreasing the air amount could be a promising idea for HC emission reduction in NGD dual-fuel engine, too.

Dual-Fuel Diesel Engines

Dual-Fuel Diesel Engines PDF Author: Ghazi A. Karim
Publisher: CRC Press
ISBN: 1498703097
Category : Technology & Engineering
Languages : en
Pages : 312

Book Description
Dual-Fuel Diesel Engines offers a detailed discussion of different types of dual-fuel diesel engines, the gaseous fuels they can use, and their operational practices. Reflecting cutting-edge advancements in this rapidly expanding field, this timely book:Explains the benefits and challenges associated with internal combustion, compression ignition,

Natural Gas Engines

Natural Gas Engines PDF Author: Kalyan Kumar Srinivasan
Publisher: Springer
ISBN: 9811333076
Category : Technology & Engineering
Languages : en
Pages : 428

Book Description
This book covers the various advanced reciprocating combustion engine technologies that utilize natural gas and alternative fuels for transportation and power generation applications. It is divided into three major sections consisting of both fundamental and applied technologies to identify (but not limited to) clean, high-efficiency opportunities with natural gas fueling that have been developed through experimental protocols, numerical and high-performance computational simulations, and zero-dimensional, multizone combustion simulations. Particular emphasis is placed on statutes to monitor fine particulate emissions from tailpipe of engines operating on natural gas and alternative fuels.

A Computational Study of Diesel and Diesel-methane Dual Fuel Combustion in a Single-cylinder Research Engine

A Computational Study of Diesel and Diesel-methane Dual Fuel Combustion in a Single-cylinder Research Engine PDF Author: Prabhat Ranjan Jha
Publisher:
ISBN:
Category :
Languages : en
Pages : 114

Book Description
Dual fuel combustion is one strategy to achieve low oxides of nitrogen and soot emissions while maintaining the fuel conversion efficiency of IC engines. However, it also suffers from high engine-out carbon monoxide and unburned hydrocarbon emissions, and the incidence of knock at high loads. The present work focused on CFD simulation of diesel-methane dual fuel combustion in a single-cylinder research engine (SCRE). For pure diesel combustion, a load sweep of 2.5 bar brake mean effective pressure (BMEP) to 7.5 bar BMEP was performed at a constant engine speed of 1500 rpm and a diesel injection pressure of 500 bar. For diesel-methane dual fuel combustion, a methane percent energy substitution sweep was performed from 30% to 90 % at 1500 rpm, 3.3 bar BMEP, 500 bar Pinj, and 355 crank angle degrees (CAD) diesel injection timing. Combustion, performance, and emissions results are presented and compared with experimental data where possible.