Author: Zane Clinton Motteler
Publisher:
ISBN:
Category : Differential equations, Partial
Languages : en
Pages : 104
Book Description
Existence Theorems for Quasi-linear Elliptic Partial Differential Equations in N Variables
Author: Zane Clinton Motteler
Publisher:
ISBN:
Category : Differential equations, Partial
Languages : en
Pages : 104
Book Description
Publisher:
ISBN:
Category : Differential equations, Partial
Languages : en
Pages : 104
Book Description
Quasilinear Elliptic Partial Differential Equations in N Variables
Author: Neil S. Trudinger
Publisher:
ISBN:
Category : Differential equations, Partial
Languages : en
Pages : 264
Book Description
Publisher:
ISBN:
Category : Differential equations, Partial
Languages : en
Pages : 264
Book Description
Linear and Quasilinear Elliptic Equations
Author: Olʹga Aleksandrovna Ladyzhenskai︠a︡
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 524
Book Description
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 524
Book Description
Quasilinear Degenerate and Nonuniformly Elliptic and Parabolic Equations of Second Order
Author: A. V. Ivanov
Publisher: American Mathematical Soc.
ISBN: 9780821830802
Category : Mathematics
Languages : en
Pages : 306
Book Description
Publisher: American Mathematical Soc.
ISBN: 9780821830802
Category : Mathematics
Languages : en
Pages : 306
Book Description
Existence Theorems in Partial Differential Equations. (AM-23), Volume 23
Author: Dorothy L. Bernstein
Publisher: Princeton University Press
ISBN: 1400882222
Category : Mathematics
Languages : en
Pages : 228
Book Description
The description for this book, Existence Theorems in Partial Differential Equations. (AM-23), Volume 23, will be forthcoming.
Publisher: Princeton University Press
ISBN: 1400882222
Category : Mathematics
Languages : en
Pages : 228
Book Description
The description for this book, Existence Theorems in Partial Differential Equations. (AM-23), Volume 23, will be forthcoming.
Elliptic Partial Differential Equations of Second Order
Author: D. Gilbarg
Publisher: Springer Science & Business Media
ISBN: 364296379X
Category : Mathematics
Languages : en
Pages : 409
Book Description
This volume is intended as an essentially self contained exposition of portions of the theory of second order quasilinear elliptic partial differential equations, with emphasis on the Dirichlet problem in bounded domains. It grew out of lecture notes for graduate courses by the authors at Stanford University, the final material extending well beyond the scope of these courses. By including preparatory chapters on topics such as potential theory and functional analysis, we have attempted to make the work accessible to a broad spectrum of readers. Above all, we hope the readers of this book will gain an appreciation of the multitude of ingenious barehanded techniques that have been developed in the study of elliptic equations and have become part of the repertoire of analysis. Many individuals have assisted us during the evolution of this work over the past several years. In particular, we are grateful for the valuable discussions with L. M. Simon and his contributions in Sections 15.4 to 15.8; for the helpful comments and corrections of J. M. Cross, A. S. Geue, J. Nash, P. Trudinger and B. Turkington; for the contributions of G. Williams in Section 10.5 and of A. S. Geue in Section 10.6; and for the impeccably typed manuscript which resulted from the dedicated efforts oflsolde Field at Stanford and Anna Zalucki at Canberra. The research of the authors connected with this volume was supported in part by the National Science Foundation.
Publisher: Springer Science & Business Media
ISBN: 364296379X
Category : Mathematics
Languages : en
Pages : 409
Book Description
This volume is intended as an essentially self contained exposition of portions of the theory of second order quasilinear elliptic partial differential equations, with emphasis on the Dirichlet problem in bounded domains. It grew out of lecture notes for graduate courses by the authors at Stanford University, the final material extending well beyond the scope of these courses. By including preparatory chapters on topics such as potential theory and functional analysis, we have attempted to make the work accessible to a broad spectrum of readers. Above all, we hope the readers of this book will gain an appreciation of the multitude of ingenious barehanded techniques that have been developed in the study of elliptic equations and have become part of the repertoire of analysis. Many individuals have assisted us during the evolution of this work over the past several years. In particular, we are grateful for the valuable discussions with L. M. Simon and his contributions in Sections 15.4 to 15.8; for the helpful comments and corrections of J. M. Cross, A. S. Geue, J. Nash, P. Trudinger and B. Turkington; for the contributions of G. Williams in Section 10.5 and of A. S. Geue in Section 10.6; and for the impeccably typed manuscript which resulted from the dedicated efforts oflsolde Field at Stanford and Anna Zalucki at Canberra. The research of the authors connected with this volume was supported in part by the National Science Foundation.
Elliptic Partial Differential Equations
Author: Lucio Boccardo
Publisher: Walter de Gruyter
ISBN: 3110315424
Category : Mathematics
Languages : en
Pages : 204
Book Description
Elliptic partial differential equations is one of the main and most active areas in mathematics. This book is devoted to the study of linear and nonlinear elliptic problems in divergence form, with the aim of providing classical results, as well as more recent developments about distributional solutions. For this reason this monograph is addressed to master's students, PhD students and anyone who wants to begin research in this mathematical field.
Publisher: Walter de Gruyter
ISBN: 3110315424
Category : Mathematics
Languages : en
Pages : 204
Book Description
Elliptic partial differential equations is one of the main and most active areas in mathematics. This book is devoted to the study of linear and nonlinear elliptic problems in divergence form, with the aim of providing classical results, as well as more recent developments about distributional solutions. For this reason this monograph is addressed to master's students, PhD students and anyone who wants to begin research in this mathematical field.
Nuclear Science Abstracts
Elliptic Partial Differential Equations and Quasiconformal Mappings in the Plane
Author: Kari Astala
Publisher: Princeton University Press
ISBN: 1400830117
Category : Mathematics
Languages : en
Pages : 696
Book Description
This book explores the most recent developments in the theory of planar quasiconformal mappings with a particular focus on the interactions with partial differential equations and nonlinear analysis. It gives a thorough and modern approach to the classical theory and presents important and compelling applications across a spectrum of mathematics: dynamical systems, singular integral operators, inverse problems, the geometry of mappings, and the calculus of variations. It also gives an account of recent advances in harmonic analysis and their applications in the geometric theory of mappings. The book explains that the existence, regularity, and singular set structures for second-order divergence-type equations--the most important class of PDEs in applications--are determined by the mathematics underpinning the geometry, structure, and dimension of fractal sets; moduli spaces of Riemann surfaces; and conformal dynamical systems. These topics are inextricably linked by the theory of quasiconformal mappings. Further, the interplay between them allows the authors to extend classical results to more general settings for wider applicability, providing new and often optimal answers to questions of existence, regularity, and geometric properties of solutions to nonlinear systems in both elliptic and degenerate elliptic settings.
Publisher: Princeton University Press
ISBN: 1400830117
Category : Mathematics
Languages : en
Pages : 696
Book Description
This book explores the most recent developments in the theory of planar quasiconformal mappings with a particular focus on the interactions with partial differential equations and nonlinear analysis. It gives a thorough and modern approach to the classical theory and presents important and compelling applications across a spectrum of mathematics: dynamical systems, singular integral operators, inverse problems, the geometry of mappings, and the calculus of variations. It also gives an account of recent advances in harmonic analysis and their applications in the geometric theory of mappings. The book explains that the existence, regularity, and singular set structures for second-order divergence-type equations--the most important class of PDEs in applications--are determined by the mathematics underpinning the geometry, structure, and dimension of fractal sets; moduli spaces of Riemann surfaces; and conformal dynamical systems. These topics are inextricably linked by the theory of quasiconformal mappings. Further, the interplay between them allows the authors to extend classical results to more general settings for wider applicability, providing new and often optimal answers to questions of existence, regularity, and geometric properties of solutions to nonlinear systems in both elliptic and degenerate elliptic settings.
Functional Analysis, Sobolev Spaces and Partial Differential Equations
Author: Haim Brezis
Publisher: Springer Science & Business Media
ISBN: 0387709142
Category : Mathematics
Languages : en
Pages : 600
Book Description
This textbook is a completely revised, updated, and expanded English edition of the important Analyse fonctionnelle (1983). In addition, it contains a wealth of problems and exercises (with solutions) to guide the reader. Uniquely, this book presents in a coherent, concise and unified way the main results from functional analysis together with the main results from the theory of partial differential equations (PDEs). Although there are many books on functional analysis and many on PDEs, this is the first to cover both of these closely connected topics. Since the French book was first published, it has been translated into Spanish, Italian, Japanese, Korean, Romanian, Greek and Chinese. The English edition makes a welcome addition to this list.
Publisher: Springer Science & Business Media
ISBN: 0387709142
Category : Mathematics
Languages : en
Pages : 600
Book Description
This textbook is a completely revised, updated, and expanded English edition of the important Analyse fonctionnelle (1983). In addition, it contains a wealth of problems and exercises (with solutions) to guide the reader. Uniquely, this book presents in a coherent, concise and unified way the main results from functional analysis together with the main results from the theory of partial differential equations (PDEs). Although there are many books on functional analysis and many on PDEs, this is the first to cover both of these closely connected topics. Since the French book was first published, it has been translated into Spanish, Italian, Japanese, Korean, Romanian, Greek and Chinese. The English edition makes a welcome addition to this list.