Author: Christophe Golé
Publisher: World Scientific
ISBN: 9812810765
Category : Mathematics
Languages : en
Pages : 325
Book Description
0. Introduction. 1. Fall from paradise. 2. Billiards and broken geodesies. 3. An ancestor of symplectic topology -- 1. Twist maps of the annulus. 4. Monotone twist maps of the annulus. 5. Generating functions and variational setting. 6. Examples. 7. The Poincare-Birkhoff theorem -- 2. The Aubry-Mather theorem. 8. Introduction. 9. Cyclically ordered sequences and orbits. 10. Minimizing orbits. 11. CO orbits of all rotation numbers. 12. Aubry-Mather sets -- 3. Ghost circles. 14. Gradient flow of the action. 15. The gradient flow and the Aubry-Mather theorem. 16. Ghost circles. 17. Construction of ghost circles. 18. Construction of disjoint ghost circles. 19. Proof of lemma 18.5. 20. Proof of theorem 18.1. 21. Remarks and applications. 22. Proofs of monotonicity and of the Sturmian lemma -- 4. Symplectic twist maps. 23. Symplectic twist maps of T[symbol] x IR[symbol]. 24. Examples. 25. More on generating functions. 2.6. Symplectic twist maps on general cotangent bundles of compact manifolds -- 5. Periodic orbits for symplectic twist maps of T[symbol] x IR[symbol]. 27. Presentation of the results. 28. Finite dimensional variational setting. 29. Second variation and nondegenerate periodic orbits. 30. The coercive case. 31. Asymptotically linear systems. 32. Ghost tori. 33. Hyperbolicity Vs. action minimizers -- 6. Invariant manifolds. 34. The theory of Kolmogorov-Arnold-Moser. 35. Properties of invariant tori. 36. (Un)stable manifolds and heteroclinic orbits. 37. Instability, transport and diffusion -- 7. Hamiltonian systems vs. twist maps. 38. Case study: The geodesic flow. 39. Decomposition of Hamiltonian maps into twist maps. 40. Return maps in Hamiltonian systems. 41. Suspension of symplectic twist maps by Hamiltonian flows -- 8. Periodic orbits for Hamiltonian systems. 42. Periodic orbits in the cotangent of the n-torus. 43. Periodic orbits in general cotangent spaces. 44. Linking of spheres -- 9. Generalizations of the Aubry-Mather theorem. 45. Theory for functions on lattices and PDE's. 46. Monotone recurrence relationst. 47. Anti-integrable limit. 48. Mather's theory of minimal measures. 49. The case of hyperbolic manifolds. 50. Concluding remarks -- 10. Generating phases and symplectic topology. 51. Chaperon's method and the theorem Of Conley-Zehnder. 52. Generating phases and symplectic geometry.
Symplectic Twist Maps
Author: Christophe Golé
Publisher: World Scientific
ISBN: 9812810765
Category : Mathematics
Languages : en
Pages : 325
Book Description
0. Introduction. 1. Fall from paradise. 2. Billiards and broken geodesies. 3. An ancestor of symplectic topology -- 1. Twist maps of the annulus. 4. Monotone twist maps of the annulus. 5. Generating functions and variational setting. 6. Examples. 7. The Poincare-Birkhoff theorem -- 2. The Aubry-Mather theorem. 8. Introduction. 9. Cyclically ordered sequences and orbits. 10. Minimizing orbits. 11. CO orbits of all rotation numbers. 12. Aubry-Mather sets -- 3. Ghost circles. 14. Gradient flow of the action. 15. The gradient flow and the Aubry-Mather theorem. 16. Ghost circles. 17. Construction of ghost circles. 18. Construction of disjoint ghost circles. 19. Proof of lemma 18.5. 20. Proof of theorem 18.1. 21. Remarks and applications. 22. Proofs of monotonicity and of the Sturmian lemma -- 4. Symplectic twist maps. 23. Symplectic twist maps of T[symbol] x IR[symbol]. 24. Examples. 25. More on generating functions. 2.6. Symplectic twist maps on general cotangent bundles of compact manifolds -- 5. Periodic orbits for symplectic twist maps of T[symbol] x IR[symbol]. 27. Presentation of the results. 28. Finite dimensional variational setting. 29. Second variation and nondegenerate periodic orbits. 30. The coercive case. 31. Asymptotically linear systems. 32. Ghost tori. 33. Hyperbolicity Vs. action minimizers -- 6. Invariant manifolds. 34. The theory of Kolmogorov-Arnold-Moser. 35. Properties of invariant tori. 36. (Un)stable manifolds and heteroclinic orbits. 37. Instability, transport and diffusion -- 7. Hamiltonian systems vs. twist maps. 38. Case study: The geodesic flow. 39. Decomposition of Hamiltonian maps into twist maps. 40. Return maps in Hamiltonian systems. 41. Suspension of symplectic twist maps by Hamiltonian flows -- 8. Periodic orbits for Hamiltonian systems. 42. Periodic orbits in the cotangent of the n-torus. 43. Periodic orbits in general cotangent spaces. 44. Linking of spheres -- 9. Generalizations of the Aubry-Mather theorem. 45. Theory for functions on lattices and PDE's. 46. Monotone recurrence relationst. 47. Anti-integrable limit. 48. Mather's theory of minimal measures. 49. The case of hyperbolic manifolds. 50. Concluding remarks -- 10. Generating phases and symplectic topology. 51. Chaperon's method and the theorem Of Conley-Zehnder. 52. Generating phases and symplectic geometry.
Publisher: World Scientific
ISBN: 9812810765
Category : Mathematics
Languages : en
Pages : 325
Book Description
0. Introduction. 1. Fall from paradise. 2. Billiards and broken geodesies. 3. An ancestor of symplectic topology -- 1. Twist maps of the annulus. 4. Monotone twist maps of the annulus. 5. Generating functions and variational setting. 6. Examples. 7. The Poincare-Birkhoff theorem -- 2. The Aubry-Mather theorem. 8. Introduction. 9. Cyclically ordered sequences and orbits. 10. Minimizing orbits. 11. CO orbits of all rotation numbers. 12. Aubry-Mather sets -- 3. Ghost circles. 14. Gradient flow of the action. 15. The gradient flow and the Aubry-Mather theorem. 16. Ghost circles. 17. Construction of ghost circles. 18. Construction of disjoint ghost circles. 19. Proof of lemma 18.5. 20. Proof of theorem 18.1. 21. Remarks and applications. 22. Proofs of monotonicity and of the Sturmian lemma -- 4. Symplectic twist maps. 23. Symplectic twist maps of T[symbol] x IR[symbol]. 24. Examples. 25. More on generating functions. 2.6. Symplectic twist maps on general cotangent bundles of compact manifolds -- 5. Periodic orbits for symplectic twist maps of T[symbol] x IR[symbol]. 27. Presentation of the results. 28. Finite dimensional variational setting. 29. Second variation and nondegenerate periodic orbits. 30. The coercive case. 31. Asymptotically linear systems. 32. Ghost tori. 33. Hyperbolicity Vs. action minimizers -- 6. Invariant manifolds. 34. The theory of Kolmogorov-Arnold-Moser. 35. Properties of invariant tori. 36. (Un)stable manifolds and heteroclinic orbits. 37. Instability, transport and diffusion -- 7. Hamiltonian systems vs. twist maps. 38. Case study: The geodesic flow. 39. Decomposition of Hamiltonian maps into twist maps. 40. Return maps in Hamiltonian systems. 41. Suspension of symplectic twist maps by Hamiltonian flows -- 8. Periodic orbits for Hamiltonian systems. 42. Periodic orbits in the cotangent of the n-torus. 43. Periodic orbits in general cotangent spaces. 44. Linking of spheres -- 9. Generalizations of the Aubry-Mather theorem. 45. Theory for functions on lattices and PDE's. 46. Monotone recurrence relationst. 47. Anti-integrable limit. 48. Mather's theory of minimal measures. 49. The case of hyperbolic manifolds. 50. Concluding remarks -- 10. Generating phases and symplectic topology. 51. Chaperon's method and the theorem Of Conley-Zehnder. 52. Generating phases and symplectic geometry.
Lectures on Symplectic Geometry
Author: Ana Cannas da Silva
Publisher: Springer
ISBN: 354045330X
Category : Mathematics
Languages : en
Pages : 240
Book Description
The goal of these notes is to provide a fast introduction to symplectic geometry for graduate students with some knowledge of differential geometry, de Rham theory and classical Lie groups. This text addresses symplectomorphisms, local forms, contact manifolds, compatible almost complex structures, Kaehler manifolds, hamiltonian mechanics, moment maps, symplectic reduction and symplectic toric manifolds. It contains guided problems, called homework, designed to complement the exposition or extend the reader's understanding. There are by now excellent references on symplectic geometry, a subset of which is in the bibliography of this book. However, the most efficient introduction to a subject is often a short elementary treatment, and these notes attempt to serve that purpose. This text provides a taste of areas of current research and will prepare the reader to explore recent papers and extensive books on symplectic geometry where the pace is much faster. For this reprint numerous corrections and clarifications have been made, and the layout has been improved.
Publisher: Springer
ISBN: 354045330X
Category : Mathematics
Languages : en
Pages : 240
Book Description
The goal of these notes is to provide a fast introduction to symplectic geometry for graduate students with some knowledge of differential geometry, de Rham theory and classical Lie groups. This text addresses symplectomorphisms, local forms, contact manifolds, compatible almost complex structures, Kaehler manifolds, hamiltonian mechanics, moment maps, symplectic reduction and symplectic toric manifolds. It contains guided problems, called homework, designed to complement the exposition or extend the reader's understanding. There are by now excellent references on symplectic geometry, a subset of which is in the bibliography of this book. However, the most efficient introduction to a subject is often a short elementary treatment, and these notes attempt to serve that purpose. This text provides a taste of areas of current research and will prepare the reader to explore recent papers and extensive books on symplectic geometry where the pace is much faster. For this reprint numerous corrections and clarifications have been made, and the layout has been improved.
Hamiltonian Systems with Three or More Degrees of Freedom
Author: Carles Simó
Publisher: Springer Science & Business Media
ISBN: 940114673X
Category : Mathematics
Languages : en
Pages : 681
Book Description
A survey of current knowledge about Hamiltonian systems with three or more degrees of freedom and related topics. The Hamiltonian systems appearing in most of the applications are non-integrable. Hence methods to prove non-integrability results are presented and the different meaning attributed to non-integrability are discussed. For systems near an integrable one, it can be shown that, under suitable conditions, some parts of the integrable structure, most of the invariant tori, survive. Many of the papers discuss near-integrable systems. From a topological point of view, some singularities must appear in different problems, either caustics, geodesics, moving wavefronts, etc. This is also related to singularities in the projections of invariant objects, and can be used as a signature of these objects. Hyperbolic dynamics appear as a source on unpredictable behaviour and several mechanisms of hyperbolicity are presented. The destruction of tori leads to Aubrey-Mather objects, and this is touched on for a related class of systems. Examples without periodic orbits are constructed, against a classical conjecture. Other topics concern higher dimensional systems, either finite (networks and localised vibrations on them) or infinite, like the quasiperiodic Schrödinger operator or nonlinear hyperbolic PDE displaying quasiperiodic solutions. Most of the applications presented concern celestial mechanics problems, like the asteroid problem, the design of spacecraft orbits, and methods to compute periodic solutions.
Publisher: Springer Science & Business Media
ISBN: 940114673X
Category : Mathematics
Languages : en
Pages : 681
Book Description
A survey of current knowledge about Hamiltonian systems with three or more degrees of freedom and related topics. The Hamiltonian systems appearing in most of the applications are non-integrable. Hence methods to prove non-integrability results are presented and the different meaning attributed to non-integrability are discussed. For systems near an integrable one, it can be shown that, under suitable conditions, some parts of the integrable structure, most of the invariant tori, survive. Many of the papers discuss near-integrable systems. From a topological point of view, some singularities must appear in different problems, either caustics, geodesics, moving wavefronts, etc. This is also related to singularities in the projections of invariant objects, and can be used as a signature of these objects. Hyperbolic dynamics appear as a source on unpredictable behaviour and several mechanisms of hyperbolicity are presented. The destruction of tori leads to Aubrey-Mather objects, and this is touched on for a related class of systems. Examples without periodic orbits are constructed, against a classical conjecture. Other topics concern higher dimensional systems, either finite (networks and localised vibrations on them) or infinite, like the quasiperiodic Schrödinger operator or nonlinear hyperbolic PDE displaying quasiperiodic solutions. Most of the applications presented concern celestial mechanics problems, like the asteroid problem, the design of spacecraft orbits, and methods to compute periodic solutions.
The Geometry of Hamiltonian Systems
Author: Tudor Ratiu
Publisher: Springer Science & Business Media
ISBN: 1461397251
Category : Mathematics
Languages : en
Pages : 526
Book Description
The papers in this volume are an outgrowth of the lectures and informal discussions that took place during the workshop on "The Geometry of Hamiltonian Systems" which was held at MSRl from June 5 to 16, 1989. It was, in some sense, the last major event of the year-long program on Symplectic Geometry and Mechanics. The emphasis of all the talks was on Hamiltonian dynamics and its relationship to several aspects of symplectic geometry and topology, mechanics, and dynamical systems in general. The organizers of the conference were R. Devaney (co-chairman), H. Flaschka (co-chairman), K. Meyer, and T. Ratiu. The entire meeting was built around two mini-courses of five lectures each and a series of two expository lectures. The first of the mini-courses was given by A. T. Fomenko, who presented the work of his group at Moscow University on the classification of integrable systems. The second mini course was given by J. Marsden of UC Berkeley, who spoke about several applications of symplectic and Poisson reduction to problems in stability, normal forms, and symmetric Hamiltonian bifurcation theory. Finally, the two expository talks were given by A. Fathi of the University of Florida who concentrated on the links between symplectic geometry, dynamical systems, and Teichmiiller theory.
Publisher: Springer Science & Business Media
ISBN: 1461397251
Category : Mathematics
Languages : en
Pages : 526
Book Description
The papers in this volume are an outgrowth of the lectures and informal discussions that took place during the workshop on "The Geometry of Hamiltonian Systems" which was held at MSRl from June 5 to 16, 1989. It was, in some sense, the last major event of the year-long program on Symplectic Geometry and Mechanics. The emphasis of all the talks was on Hamiltonian dynamics and its relationship to several aspects of symplectic geometry and topology, mechanics, and dynamical systems in general. The organizers of the conference were R. Devaney (co-chairman), H. Flaschka (co-chairman), K. Meyer, and T. Ratiu. The entire meeting was built around two mini-courses of five lectures each and a series of two expository lectures. The first of the mini-courses was given by A. T. Fomenko, who presented the work of his group at Moscow University on the classification of integrable systems. The second mini course was given by J. Marsden of UC Berkeley, who spoke about several applications of symplectic and Poisson reduction to problems in stability, normal forms, and symmetric Hamiltonian bifurcation theory. Finally, the two expository talks were given by A. Fathi of the University of Florida who concentrated on the links between symplectic geometry, dynamical systems, and Teichmiiller theory.
Holomorphic Curves in Low Dimensions
Author: Chris Wendl
Publisher: Springer
ISBN: 3319913719
Category : Mathematics
Languages : en
Pages : 303
Book Description
This monograph provides an accessible introduction to the applications of pseudoholomorphic curves in symplectic and contact geometry, with emphasis on dimensions four and three. The first half of the book focuses on McDuff's characterization of symplectic rational and ruled surfaces, one of the classic early applications of holomorphic curve theory. The proof presented here uses the language of Lefschetz fibrations and pencils, thus it includes some background on these topics, in addition to a survey of the required analytical results on holomorphic curves. Emphasizing applications rather than technical results, the analytical survey mostly refers to other sources for proofs, while aiming to provide precise statements that are widely applicable, plus some informal discussion of the analytical ideas behind them. The second half of the book then extends this program in two complementary directions: (1) a gentle introduction to Gromov-Witten theory and complete proof of the classification of uniruled symplectic 4-manifolds; and (2) a survey of punctured holomorphic curves and their applications to questions from 3-dimensional contact topology, such as classifying the symplectic fillings of planar contact manifolds. This book will be particularly useful to graduate students and researchers who have basic literacy in symplectic geometry and algebraic topology, and would like to learn how to apply standard techniques from holomorphic curve theory without dwelling more than necessary on the analytical details. This book is also part of the Virtual Series on Symplectic Geometry http://www.springer.com/series/16019
Publisher: Springer
ISBN: 3319913719
Category : Mathematics
Languages : en
Pages : 303
Book Description
This monograph provides an accessible introduction to the applications of pseudoholomorphic curves in symplectic and contact geometry, with emphasis on dimensions four and three. The first half of the book focuses on McDuff's characterization of symplectic rational and ruled surfaces, one of the classic early applications of holomorphic curve theory. The proof presented here uses the language of Lefschetz fibrations and pencils, thus it includes some background on these topics, in addition to a survey of the required analytical results on holomorphic curves. Emphasizing applications rather than technical results, the analytical survey mostly refers to other sources for proofs, while aiming to provide precise statements that are widely applicable, plus some informal discussion of the analytical ideas behind them. The second half of the book then extends this program in two complementary directions: (1) a gentle introduction to Gromov-Witten theory and complete proof of the classification of uniruled symplectic 4-manifolds; and (2) a survey of punctured holomorphic curves and their applications to questions from 3-dimensional contact topology, such as classifying the symplectic fillings of planar contact manifolds. This book will be particularly useful to graduate students and researchers who have basic literacy in symplectic geometry and algebraic topology, and would like to learn how to apply standard techniques from holomorphic curve theory without dwelling more than necessary on the analytical details. This book is also part of the Virtual Series on Symplectic Geometry http://www.springer.com/series/16019
Introduction to Hamiltonian Dynamical Systems and the N-Body Problem
Author: Kenneth Meyer
Publisher: Springer Science & Business Media
ISBN: 1475740735
Category : Mathematics
Languages : en
Pages : 304
Book Description
The theory of Hamiltonian systems is a vast subject which can be studied from many different viewpoints. This book develops the basic theory of Hamiltonian differential equations from a dynamical systems point of view. That is, the solutions of the differential equations are thought of as curves in a phase space and it is the geometry of these curves that is the important object of study. The analytic underpinnings of the subject are developed in detail. The last chapter on twist maps has a more geometric flavor. It was written by Glen R. Hall. The main example developed in the text is the classical N-body problem, i.e., the Hamiltonian system of differential equations which describe the motion of N point masses moving under the influence of their mutual gravitational attraction. Many of the general concepts are applied to this example. But this is not a book about the N-body problem for its own sake. The N-body problem is a subject in its own right which would require a sizable volume of its own. Very few of the special results which only apply to the N-body problem are given.
Publisher: Springer Science & Business Media
ISBN: 1475740735
Category : Mathematics
Languages : en
Pages : 304
Book Description
The theory of Hamiltonian systems is a vast subject which can be studied from many different viewpoints. This book develops the basic theory of Hamiltonian differential equations from a dynamical systems point of view. That is, the solutions of the differential equations are thought of as curves in a phase space and it is the geometry of these curves that is the important object of study. The analytic underpinnings of the subject are developed in detail. The last chapter on twist maps has a more geometric flavor. It was written by Glen R. Hall. The main example developed in the text is the classical N-body problem, i.e., the Hamiltonian system of differential equations which describe the motion of N point masses moving under the influence of their mutual gravitational attraction. Many of the general concepts are applied to this example. But this is not a book about the N-body problem for its own sake. The N-body problem is a subject in its own right which would require a sizable volume of its own. Very few of the special results which only apply to the N-body problem are given.
Symplectic Geometric Algorithms for Hamiltonian Systems
Author: Kang Feng
Publisher: Springer Science & Business Media
ISBN: 3642017770
Category : Mathematics
Languages : en
Pages : 690
Book Description
"Symplectic Geometric Algorithms for Hamiltonian Systems" will be useful not only for numerical analysts, but also for those in theoretical physics, computational chemistry, celestial mechanics, etc. The book generalizes and develops the generating function and Hamilton-Jacobi equation theory from the perspective of the symplectic geometry and symplectic algebra. It will be a useful resource for engineers and scientists in the fields of quantum theory, astrophysics, atomic and molecular dynamics, climate prediction, oil exploration, etc. Therefore a systematic research and development of numerical methodology for Hamiltonian systems is well motivated. Were it successful, it would imply wide-ranging applications.
Publisher: Springer Science & Business Media
ISBN: 3642017770
Category : Mathematics
Languages : en
Pages : 690
Book Description
"Symplectic Geometric Algorithms for Hamiltonian Systems" will be useful not only for numerical analysts, but also for those in theoretical physics, computational chemistry, celestial mechanics, etc. The book generalizes and develops the generating function and Hamilton-Jacobi equation theory from the perspective of the symplectic geometry and symplectic algebra. It will be a useful resource for engineers and scientists in the fields of quantum theory, astrophysics, atomic and molecular dynamics, climate prediction, oil exploration, etc. Therefore a systematic research and development of numerical methodology for Hamiltonian systems is well motivated. Were it successful, it would imply wide-ranging applications.
Hamiltonian Dynamical Systems
Author: Kenneth Ray Meyer
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 288
Book Description
This volume contains contributions by participants in the AMS-IMS-SIAM Summer Research Conference on Hamiltonian Dynamical Systems, held at the University of Colorado in June 1984. The conference brought together researchers from a wide spectrum of areas in Hamiltonian dynamics. The papers vary from expository descriptions of recent developments to fairly technical presentations with new results. Collectively, they provide an excellent survey of contemporary work in this area. The field of Hamiltonian dynamics has its roots in Newton's application of the science of dynamics to the emerging problems of orbital mechanics and in the development of celestial mechanics. Indeed, many of the talks at the conference emphasized topics directly concerned with such questions as the Newtonian $n$-body problem, the three-body problem, and the artificial earth satellite. Some speakers focused on those dynamical issues--such as integrability, KAM, and extensions of the Poincare-Birkhoff results--that emerged from celestial mechanics and extend to wider classes of dynamical systems. Other topics covered include periodic orbits with variation methods, twist and annulus maps, stable mainfold theory, almost periodic motion, and heteroclinic and homoclinic orbits. By bringing together papers from such a diverse range of topics, this book may serve to stimulate further development in this area.
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 288
Book Description
This volume contains contributions by participants in the AMS-IMS-SIAM Summer Research Conference on Hamiltonian Dynamical Systems, held at the University of Colorado in June 1984. The conference brought together researchers from a wide spectrum of areas in Hamiltonian dynamics. The papers vary from expository descriptions of recent developments to fairly technical presentations with new results. Collectively, they provide an excellent survey of contemporary work in this area. The field of Hamiltonian dynamics has its roots in Newton's application of the science of dynamics to the emerging problems of orbital mechanics and in the development of celestial mechanics. Indeed, many of the talks at the conference emphasized topics directly concerned with such questions as the Newtonian $n$-body problem, the three-body problem, and the artificial earth satellite. Some speakers focused on those dynamical issues--such as integrability, KAM, and extensions of the Poincare-Birkhoff results--that emerged from celestial mechanics and extend to wider classes of dynamical systems. Other topics covered include periodic orbits with variation methods, twist and annulus maps, stable mainfold theory, almost periodic motion, and heteroclinic and homoclinic orbits. By bringing together papers from such a diverse range of topics, this book may serve to stimulate further development in this area.
An Introduction to Contact Topology
Author: Hansjörg Geiges
Publisher: Cambridge University Press
ISBN: 1139467956
Category : Mathematics
Languages : en
Pages : 8
Book Description
This text on contact topology is a comprehensive introduction to the subject, including recent striking applications in geometric and differential topology: Eliashberg's proof of Cerf's theorem via the classification of tight contact structures on the 3-sphere, and the Kronheimer-Mrowka proof of property P for knots via symplectic fillings of contact 3-manifolds. Starting with the basic differential topology of contact manifolds, all aspects of 3-dimensional contact manifolds are treated in this book. One notable feature is a detailed exposition of Eliashberg's classification of overtwisted contact structures. Later chapters also deal with higher-dimensional contact topology. Here the focus is on contact surgery, but other constructions of contact manifolds are described, such as open books or fibre connected sums. This book serves both as a self-contained introduction to the subject for advanced graduate students and as a reference for researchers.
Publisher: Cambridge University Press
ISBN: 1139467956
Category : Mathematics
Languages : en
Pages : 8
Book Description
This text on contact topology is a comprehensive introduction to the subject, including recent striking applications in geometric and differential topology: Eliashberg's proof of Cerf's theorem via the classification of tight contact structures on the 3-sphere, and the Kronheimer-Mrowka proof of property P for knots via symplectic fillings of contact 3-manifolds. Starting with the basic differential topology of contact manifolds, all aspects of 3-dimensional contact manifolds are treated in this book. One notable feature is a detailed exposition of Eliashberg's classification of overtwisted contact structures. Later chapters also deal with higher-dimensional contact topology. Here the focus is on contact surgery, but other constructions of contact manifolds are described, such as open books or fibre connected sums. This book serves both as a self-contained introduction to the subject for advanced graduate students and as a reference for researchers.
Asymptotics beyond All Orders
Author: Harvey Segur
Publisher: Springer Science & Business Media
ISBN: 1475704356
Category : Science
Languages : en
Pages : 388
Book Description
An asymptotic expansion is a series that provides a sequence of increasingly accurate approximations to a function in a particular limit. The formal definition, given by Poincare (1886, Acta Math. 8:295), is as follows. Given a function,
Publisher: Springer Science & Business Media
ISBN: 1475704356
Category : Science
Languages : en
Pages : 388
Book Description
An asymptotic expansion is a series that provides a sequence of increasingly accurate approximations to a function in a particular limit. The formal definition, given by Poincare (1886, Acta Math. 8:295), is as follows. Given a function,