Evolutionary Search and the Job Shop PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Evolutionary Search and the Job Shop PDF full book. Access full book title Evolutionary Search and the Job Shop by Dirk C. Mattfeld. Download full books in PDF and EPUB format.

Evolutionary Search and the Job Shop

Evolutionary Search and the Job Shop PDF Author: Dirk C. Mattfeld
Publisher: Springer Science & Business Media
ISBN: 3662117126
Category : Business & Economics
Languages : en
Pages : 162

Book Description
Production scheduling dictates highly constrained mathematical models with complex and often contradicting objectives. Evolutionary algorithms can be formulated almost independently of the detailed shaping of the problems under consideration. As one would expect, a weak formulation of the problem in the algorithm comes along with a quite inefficient search. This book discusses the suitability of genetic algorithms for production scheduling and presents an approach which produces results comparable with those of more tailored optimization techniques.

Evolutionary Search and the Job Shop

Evolutionary Search and the Job Shop PDF Author: Dirk C. Mattfeld
Publisher: Springer Science & Business Media
ISBN: 3662117126
Category : Business & Economics
Languages : en
Pages : 162

Book Description
Production scheduling dictates highly constrained mathematical models with complex and often contradicting objectives. Evolutionary algorithms can be formulated almost independently of the detailed shaping of the problems under consideration. As one would expect, a weak formulation of the problem in the algorithm comes along with a quite inefficient search. This book discusses the suitability of genetic algorithms for production scheduling and presents an approach which produces results comparable with those of more tailored optimization techniques.

Intelligent and Evolutionary Systems

Intelligent and Evolutionary Systems PDF Author: Mitsuo Gen
Publisher: Springer Science & Business Media
ISBN: 3540959777
Category : Computers
Languages : en
Pages : 218

Book Description
This book offers fourteen select papers presented at the recent Asia-Pacific Symposia on Intelligent and Evolutionary Systems. They illustrate the breadth of research in the field with applications ranging from business to medicine to network optimization.

Evolutionary Optimization Algorithms

Evolutionary Optimization Algorithms PDF Author: Dan Simon
Publisher: John Wiley & Sons
ISBN: 1118659503
Category : Mathematics
Languages : en
Pages : 776

Book Description
A clear and lucid bottom-up approach to the basic principles of evolutionary algorithms Evolutionary algorithms (EAs) are a type of artificial intelligence. EAs are motivated by optimization processes that we observe in nature, such as natural selection, species migration, bird swarms, human culture, and ant colonies. This book discusses the theory, history, mathematics, and programming of evolutionary optimization algorithms. Featured algorithms include genetic algorithms, genetic programming, ant colony optimization, particle swarm optimization, differential evolution, biogeography-based optimization, and many others. Evolutionary Optimization Algorithms: Provides a straightforward, bottom-up approach that assists the reader in obtaining a clear but theoretically rigorous understanding of evolutionary algorithms, with an emphasis on implementation Gives a careful treatment of recently developed EAs including opposition-based learning, artificial fish swarms, bacterial foraging, and many others and discusses their similarities and differences from more well-established EAs Includes chapter-end problems plus a solutions manual available online for instructors Offers simple examples that provide the reader with an intuitive understanding of the theory Features source code for the examples available on the author's website Provides advanced mathematical techniques for analyzing EAs, including Markov modeling and dynamic system modeling Evolutionary Optimization Algorithms: Biologically Inspired and Population-Based Approaches to Computer Intelligence is an ideal text for advanced undergraduate students, graduate students, and professionals involved in engineering and computer science.

Applied Evolutionary Algorithms in Java

Applied Evolutionary Algorithms in Java PDF Author: Robert Ghanea-Hercock
Publisher: Springer Science & Business Media
ISBN: 0387216154
Category : Computers
Languages : en
Pages : 232

Book Description
This book is intended for students, researchers, and professionals interested in evolutionary algorithms at graduate and postgraduate level. No mathematics beyond basic algebra and Cartesian graphs methods is required, as the aim is to encourage applying the JAVA toolkit to develop an appreciation of the power of these techniques.

Handbook of Genetic Algorithms

Handbook of Genetic Algorithms PDF Author: Lawrence Davis
Publisher: Van Nostrand Reinhold Company
ISBN:
Category : Mathematics
Languages : en
Pages : 406

Book Description


Evolutionary Algorithms

Evolutionary Algorithms PDF Author: Alain Petrowski
Publisher: John Wiley & Sons
ISBN: 1848218044
Category : Computers
Languages : en
Pages : 258

Book Description
Evolutionary algorithms are bio-inspired algorithms based on Darwin’s theory of evolution. They are expected to provide non-optimal but good quality solutions to problems whose resolution is impracticable by exact methods. In six chapters, this book presents the essential knowledge required to efficiently implement evolutionary algorithms. Chapter 1 describes a generic evolutionary algorithm as well as the basic operators that compose it. Chapter 2 is devoted to the solving of continuous optimization problems, without constraint. Three leading approaches are described and compared on a set of test functions. Chapter 3 considers continuous optimization problems with constraints. Various approaches suitable for evolutionary methods are presented. Chapter 4 is related to combinatorial optimization. It provides a catalog of variation operators to deal with order-based problems. Chapter 5 introduces the basic notions required to understand the issue of multi-objective optimization and a variety of approaches for its application. Finally, Chapter 6 describes different approaches of genetic programming able to evolve computer programs in the context of machine learning.

Evolutionary Computation in Combinatorial Optimization

Evolutionary Computation in Combinatorial Optimization PDF Author: Arnaud Liefooghe
Publisher: Springer
ISBN: 3030167119
Category : Computers
Languages : en
Pages : 231

Book Description
This book constitutes the refereed proceedings of the 19th European Conference on Evolutionary Computation in Combinatorial Optimization, EvoCOP 2019, held as part of Evo* 2019, in Leipzig, Germany, in April 2019, co-located with the Evo* 2019 events EuroGP, EvoMUSART and EvoApplications. The 14 revised full papers presented were carefully reviewed and selected from 37 submissions. The papers cover a wide spectrum of topics, ranging from the foundations of evolutionary computation algorithms and other search heuristics to their accurate design and application to both single- and multi-objective combinatorial optimization problems. Fundamental and methodological aspects deal with runtime analysis, the structural properties of fitness landscapes, the study of metaheuristics core components, the clever design of their search principles, and their careful selection and configuration. Applications cover domains such as scheduling, routing, partitioning and general graph problems.

Introduction to Evolutionary Computing

Introduction to Evolutionary Computing PDF Author: A.E. Eiben
Publisher: Springer Science & Business Media
ISBN: 9783540401841
Category : Computers
Languages : en
Pages : 328

Book Description
The first complete overview of evolutionary computing, the collective name for a range of problem-solving techniques based on principles of biological evolution, such as natural selection and genetic inheritance. The text is aimed directly at lecturers and graduate and undergraduate students. It is also meant for those who wish to apply evolutionary computing to a particular problem or within a given application area. The book contains quick-reference information on the current state-of-the-art in a wide range of related topics, so it is of interest not just to evolutionary computing specialists but to researchers working in other fields.

Multiobjective Scheduling by Genetic Algorithms

Multiobjective Scheduling by Genetic Algorithms PDF Author: Tapan P. Bagchi
Publisher: Springer Science & Business Media
ISBN: 9780792385615
Category : Business & Economics
Languages : en
Pages : 384

Book Description
Multiobjective Scheduling by Genetic Algorithms describes methods for developing multiobjective solutions to common production scheduling equations modeling in the literature as flowshops, job shops and open shops. The methodology is metaheuristic, one inspired by how nature has evolved a multitude of coexisting species of living beings on earth. Multiobjective flowshops, job shops and open shops are each highly relevant models in manufacturing, classroom scheduling or automotive assembly, yet for want of sound methods they have remained almost untouched to date. This text shows how methods such as Elitist Nondominated Sorting Genetic Algorithm (ENGA) can find a bevy of Pareto optimal solutions for them. Also it accents the value of hybridizing Gas with both solution-generating and solution-improvement methods. It envisions fundamental research into such methods, greatly strengthening the growing reach of metaheuristic methods. This book is therefore intended for students of industrial engineering, operations research, operations management and computer science, as well as practitioners. It may also assist in the development of efficient shop management software tools for schedulers and production planners who face multiple planning and operating objectives as a matter of course.

Evolutionary Algorithms in Engineering Applications

Evolutionary Algorithms in Engineering Applications PDF Author: Dipankar Dasgupta
Publisher: Springer Science & Business Media
ISBN: 3662034239
Category : Computers
Languages : en
Pages : 561

Book Description
Evolutionary algorithms are general-purpose search procedures based on the mechanisms of natural selection and population genetics. They are appealing because they are simple, easy to interface, and easy to extend. This volume is concerned with applications of evolutionary algorithms and associated strategies in engineering. It will be useful for engineers, designers, developers, and researchers in any scientific discipline interested in the applications of evolutionary algorithms. The volume consists of five parts, each with four or five chapters. The topics are chosen to emphasize application areas in different fields of engineering. Each chapter can be used for self-study or as a reference by practitioners to help them apply evolutionary algorithms to problems in their engineering domains.