Evolutionary Integral Equations and Applications PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Evolutionary Integral Equations and Applications PDF full book. Access full book title Evolutionary Integral Equations and Applications by Jan Prüss. Download full books in PDF and EPUB format.

Evolutionary Integral Equations and Applications

Evolutionary Integral Equations and Applications PDF Author: Jan Prüss
Publisher: Springer Science & Business Media
ISBN: 3034804997
Category : Mathematics
Languages : en
Pages : 391

Book Description
This book deals with evolutionary systems whose equation of state can be formulated as a linear Volterra equation in a Banach space. The main feature of the kernels involved is that they consist of unbounded linear operators. The aim is a coherent presentation of the state of art of the theory including detailed proofs and its applications to problems from mathematical physics, such as viscoelasticity, heat conduction, and electrodynamics with memory. The importance of evolutionary integral equations ‒ which form a larger class than do evolution equations​ ‒ stems from such applications and therefore special emphasis is placed on these. A number of models are derived and, by means of the developed theory, discussed thoroughly. An annotated bibliography containing 450 entries increases the book’s value as an incisive reference text. --- This excellent book presents a general approach to linear evolutionary systems, with an emphasis on infinite-dimensional systems with time delays, such as those occurring in linear viscoelasticity with or without thermal effects. It gives a very natural and mature extension of the usual semigroup approach to a more general class of infinite-dimensional evolutionary systems. This is the first appearance in the form of a monograph of this recently developed theory. A substantial part of the results are due to the author, or are even new. (...) It is not a book that one reads in a few days. Rather, it should be considered as an investment with lasting value. (Zentralblatt MATH) In this book, the author, who has been at the forefront of research on these problems for the last decade, has collected, and in many places extended, the known theory for these equations. In addition, he has provided a framework that allows one to relate and evaluate diverse results in the literature. (Mathematical Reviews) This book constitutes a highly valuable addition to the existing literature on the theory of Volterra (evolutionary) integral equations and their applications in physics and engineering. (...) and for the first time the stress is on the infinite-dimensional case. (SIAM Reviews)

Evolutionary Integral Equations and Applications

Evolutionary Integral Equations and Applications PDF Author: Jan Prüss
Publisher: Springer Science & Business Media
ISBN: 3034804997
Category : Mathematics
Languages : en
Pages : 391

Book Description
This book deals with evolutionary systems whose equation of state can be formulated as a linear Volterra equation in a Banach space. The main feature of the kernels involved is that they consist of unbounded linear operators. The aim is a coherent presentation of the state of art of the theory including detailed proofs and its applications to problems from mathematical physics, such as viscoelasticity, heat conduction, and electrodynamics with memory. The importance of evolutionary integral equations ‒ which form a larger class than do evolution equations​ ‒ stems from such applications and therefore special emphasis is placed on these. A number of models are derived and, by means of the developed theory, discussed thoroughly. An annotated bibliography containing 450 entries increases the book’s value as an incisive reference text. --- This excellent book presents a general approach to linear evolutionary systems, with an emphasis on infinite-dimensional systems with time delays, such as those occurring in linear viscoelasticity with or without thermal effects. It gives a very natural and mature extension of the usual semigroup approach to a more general class of infinite-dimensional evolutionary systems. This is the first appearance in the form of a monograph of this recently developed theory. A substantial part of the results are due to the author, or are even new. (...) It is not a book that one reads in a few days. Rather, it should be considered as an investment with lasting value. (Zentralblatt MATH) In this book, the author, who has been at the forefront of research on these problems for the last decade, has collected, and in many places extended, the known theory for these equations. In addition, he has provided a framework that allows one to relate and evaluate diverse results in the literature. (Mathematical Reviews) This book constitutes a highly valuable addition to the existing literature on the theory of Volterra (evolutionary) integral equations and their applications in physics and engineering. (...) and for the first time the stress is on the infinite-dimensional case. (SIAM Reviews)

Evolutionary Integral Equations and Applications

Evolutionary Integral Equations and Applications PDF Author: J. Prüss
Publisher: Birkhäuser
ISBN: 3034885709
Category : Science
Languages : en
Pages : 393

Book Description
During the last two decades the theory of abstract Volterra equations has under gone rapid development. To a large extent this was due to the applications of this theory to problems in mathematical physics, such as viscoelasticity, heat conduc tion in materials with memory, electrodynamics with memory, and to the need of tools to tackle the problems arising in these fields. Many interesting phenomena not found with differential equations but observed in specific examples of Volterra type stimulated research and improved our understanding and knowledge. Al though this process is still going on, in particular concerning nonlinear problems, the linear theory has reached a state of maturity. In recent years several good books on Volterra equations have appeared. How ever, none of them accounts for linear problems in infinite dimensions, and there fore this part of the theory has been available only through the - meanwhile enor mous - original literature, so far. The present monograph intends to close this gap. Its aim is a coherent exposition of the state of the art in the linear theory. It brings together and unifies most of the relevant results available at present, and should ease the way through the original literature for anyone intending to work on abstract Volterra equations and its applications. And it exhibits many prob lems in the linear theory which have not been solved or even not been considered, so far.

Evolutionary Integral Equations and Applications

Evolutionary Integral Equations and Applications PDF Author: Springer
Publisher:
ISBN: 9783034805001
Category :
Languages : en
Pages : 394

Book Description


Evolutionary Integral Equations and Applications

Evolutionary Integral Equations and Applications PDF Author: Jan Prüss
Publisher: Birkhauser
ISBN: 9780817628765
Category : Mathematics
Languages : en
Pages : 0

Book Description


New Prospects in Direct, Inverse and Control Problems for Evolution Equations

New Prospects in Direct, Inverse and Control Problems for Evolution Equations PDF Author: Angelo Favini
Publisher: Springer
ISBN: 3319114069
Category : Mathematics
Languages : en
Pages : 472

Book Description
This book, based on a selection of talks given at a dedicated meeting in Cortona, Italy, in June 2013, shows the high degree of interaction between a number of fields related to applied sciences. Applied sciences consider situations in which the evolution of a given system over time is observed, and the related models can be formulated in terms of evolution equations (EEs). These equations have been studied intensively in theoretical research and are the source of an enormous number of applications. In this volume, particular attention is given to direct, inverse and control problems for EEs. The book provides an updated overview of the field, revealing its richness and vitality.

Differential Equations, Mathematical Modeling and Computational Algorithms

Differential Equations, Mathematical Modeling and Computational Algorithms PDF Author: Vladimir Vasilyev
Publisher: Springer Nature
ISBN: 3031285050
Category : Mathematics
Languages : en
Pages : 294

Book Description
This book contains reports made at the International Conference on Differential Equations, Mathematical Modeling and Computational Algorithms, held in Belgorod, Russia, in October 2021 and is devoted to various aspects of the theory of differential equations and their applications in various branches of science. Theoretical papers devoted to the qualitative analysis of emerging mathematical objects, theorems of the existence and uniqueness of solutions to the boundary value problems under study are presented, and numerical algorithms for their solution are described. Some issues of mathematical modeling are also covered; in particular, in problems of economics, computational aspects of the theory of differential equations and boundary value problems are studied. The articles are written by well-known experts and are interesting and useful to a wide audience: mathematicians, representatives of applied sciences and students and postgraduates of universities engaged in applied mathematics.

Computational Statistics and Data Intelligence

Computational Statistics and Data Intelligence PDF Author: Wenfeng Wang
Publisher: Springer Nature
ISBN: 9819744385
Category :
Languages : en
Pages : 179

Book Description


Almost Periodic and Almost Automorphic Solutions to Integro-Differential Equations

Almost Periodic and Almost Automorphic Solutions to Integro-Differential Equations PDF Author: Marko Kostić
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110641259
Category : Mathematics
Languages : en
Pages : 508

Book Description
This book discusses almost periodic and almost automorphic solutions to abstract integro-differential Volterra equations that are degenerate in time, and in particular equations whose solutions are governed by (degenerate) solution operator families with removable singularities at zero. It particularly covers abstract fractional equations and inclusions with multivalued linear operators as well as abstract fractional semilinear Cauchy problems.

Integral Equations and Their Applications

Integral Equations and Their Applications PDF Author: Matiur Rahman
Publisher: WIT Press
ISBN: 1845641019
Category : Mathematics
Languages : en
Pages : 385

Book Description
The book deals with linear integral equations, that is, equations involving an unknown function which appears under the integral sign and contains topics such as Abel's integral equation, Volterra integral equations, Fredholm integral integral equations, singular and nonlinear integral equations, orthogonal systems of functions, Green's function as a symmetric kernel of the integral equations.

Nonlinear Systems

Nonlinear Systems PDF Author:
Publisher: BoD – Books on Demand
ISBN: 1789854717
Category : Mathematics
Languages : en
Pages : 288

Book Description
The editors of this book have incorporated contributions from a diverse group of leading researchers in the field of nonlinear systems. To enrich the scope of the content, this book contains a valuable selection of works on fractional differential equations.The book aims to provide an overview of the current knowledge on nonlinear systems and some aspects of fractional calculus. The main subject areas are divided into two theoretical and applied sections. Nonlinear systems are useful for researchers in mathematics, applied mathematics, and physics, as well as graduate students who are studying these systems with reference to their theory and application. This book is also an ideal complement to the specific literature on engineering, biology, health science, and other applied science areas. The opportunity given by IntechOpen to offer this book under the open access system contributes to disseminating the field of nonlinear systems to a wide range of researchers.