Author: J. Richard McIntosh
Publisher: Elsevier
ISBN: 0080475035
Category : Science
Languages : en
Pages : 878
Book Description
Recent advances in the imaging technique electron microscopy (EM) have improved the method, making it more reliable and rewarding, particularly in its description of three-dimensional detail. Cellular Electron Microscopy will help biologists from many disciplines understand modern EM and the value it might bring to their own work. The book's five sections deal with all major issues in EM of cells: specimen preparation, imaging in 3-D, imaging and understanding frozen-hydrated samples, labeling macromolecules, and analyzing EM data. Each chapter was written by scientists who are among the best in their field, and some chapters provide multiple points of view on the issues they discuss. Each section of the book is preceded by an introduction, which should help newcomers understand the subject. The book shows why many biologists believe that modern EM will forge the link between light microscopy of live cells and atomic resolution studies of isolated macromolecules, helping us toward the goal of an atomic resolution understanding of living systems. - Updates the numerous technological innovations that have improved the capabilities of electron microscopy - Provides timely coverage of the subject given the significant rise in the number of biologists using light microscopy to answer their questions and the natural limitations of this kind of imaging - Chapters include a balance of "how to", "so what" and "where next", providing the reader with both practical information, which is necessary to use these methods, and a sense of where the field is going
Cellular Electron Microscopy
Hyperspectral Image Analysis
Author: Saurabh Prasad
Publisher: Springer Nature
ISBN: 3030386171
Category : Computers
Languages : en
Pages : 464
Book Description
This book reviews the state of the art in algorithmic approaches addressing the practical challenges that arise with hyperspectral image analysis tasks, with a focus on emerging trends in machine learning and image processing/understanding. It presents advances in deep learning, multiple instance learning, sparse representation based learning, low-dimensional manifold models, anomalous change detection, target recognition, sensor fusion and super-resolution for robust multispectral and hyperspectral image understanding. It presents research from leading international experts who have made foundational contributions in these areas. The book covers a diverse array of applications of multispectral/hyperspectral imagery in the context of these algorithms, including remote sensing, face recognition and biomedicine. This book would be particularly beneficial to graduate students and researchers who are taking advanced courses in (or are working in) the areas of image analysis, machine learning and remote sensing with multi-channel optical imagery. Researchers and professionals in academia and industry working in areas such as electrical engineering, civil and environmental engineering, geosciences and biomedical image processing, who work with multi-channel optical data will find this book useful.
Publisher: Springer Nature
ISBN: 3030386171
Category : Computers
Languages : en
Pages : 464
Book Description
This book reviews the state of the art in algorithmic approaches addressing the practical challenges that arise with hyperspectral image analysis tasks, with a focus on emerging trends in machine learning and image processing/understanding. It presents advances in deep learning, multiple instance learning, sparse representation based learning, low-dimensional manifold models, anomalous change detection, target recognition, sensor fusion and super-resolution for robust multispectral and hyperspectral image understanding. It presents research from leading international experts who have made foundational contributions in these areas. The book covers a diverse array of applications of multispectral/hyperspectral imagery in the context of these algorithms, including remote sensing, face recognition and biomedicine. This book would be particularly beneficial to graduate students and researchers who are taking advanced courses in (or are working in) the areas of image analysis, machine learning and remote sensing with multi-channel optical imagery. Researchers and professionals in academia and industry working in areas such as electrical engineering, civil and environmental engineering, geosciences and biomedical image processing, who work with multi-channel optical data will find this book useful.
Biomedical Data Mining for Information Retrieval
Author: Sujata Dash
Publisher: John Wiley & Sons
ISBN: 111971124X
Category : Computers
Languages : en
Pages : 450
Book Description
BIOMEDICAL DATA MINING FOR INFORMATION RETRIEVAL This book not only emphasizes traditional computational techniques, but discusses data mining, biomedical image processing, information retrieval with broad coverage of basic scientific applications. Biomedical Data Mining for Information Retrieval comprehensively covers the topic of mining biomedical text, images and visual features towards information retrieval. Biomedical and health informatics is an emerging field of research at the intersection of information science, computer science, and healthcare and brings tremendous opportunities and challenges due to easily available and abundant biomedical data for further analysis. The aim of healthcare informatics is to ensure the high-quality, efficient healthcare, better treatment and quality of life by analyzing biomedical and healthcare data including patient’s data, electronic health records (EHRs) and lifestyle. Previously, it was a common requirement to have a domain expert to develop a model for biomedical or healthcare; however, recent advancements in representation learning algorithms allows us to automatically to develop the model. Biomedical image mining, a novel research area, due to the vast amount of available biomedical images, increasingly generates and stores digitally. These images are mainly in the form of computed tomography (CT), X-ray, nuclear medicine imaging (PET, SPECT), magnetic resonance imaging (MRI) and ultrasound. Patients’ biomedical images can be digitized using data mining techniques and may help in answering several important and critical questions relating to healthcare. Image mining in medicine can help to uncover new relationships between data and reveal new useful information that can be helpful for doctors in treating their patients. Audience Researchers in various fields including computer science, medical informatics, healthcare IOT, artificial intelligence, machine learning, image processing, clinical big data analytics.
Publisher: John Wiley & Sons
ISBN: 111971124X
Category : Computers
Languages : en
Pages : 450
Book Description
BIOMEDICAL DATA MINING FOR INFORMATION RETRIEVAL This book not only emphasizes traditional computational techniques, but discusses data mining, biomedical image processing, information retrieval with broad coverage of basic scientific applications. Biomedical Data Mining for Information Retrieval comprehensively covers the topic of mining biomedical text, images and visual features towards information retrieval. Biomedical and health informatics is an emerging field of research at the intersection of information science, computer science, and healthcare and brings tremendous opportunities and challenges due to easily available and abundant biomedical data for further analysis. The aim of healthcare informatics is to ensure the high-quality, efficient healthcare, better treatment and quality of life by analyzing biomedical and healthcare data including patient’s data, electronic health records (EHRs) and lifestyle. Previously, it was a common requirement to have a domain expert to develop a model for biomedical or healthcare; however, recent advancements in representation learning algorithms allows us to automatically to develop the model. Biomedical image mining, a novel research area, due to the vast amount of available biomedical images, increasingly generates and stores digitally. These images are mainly in the form of computed tomography (CT), X-ray, nuclear medicine imaging (PET, SPECT), magnetic resonance imaging (MRI) and ultrasound. Patients’ biomedical images can be digitized using data mining techniques and may help in answering several important and critical questions relating to healthcare. Image mining in medicine can help to uncover new relationships between data and reveal new useful information that can be helpful for doctors in treating their patients. Audience Researchers in various fields including computer science, medical informatics, healthcare IOT, artificial intelligence, machine learning, image processing, clinical big data analytics.
Deep Learning for Medical Image Analysis
Author: S. Kevin Zhou
Publisher: Academic Press
ISBN: 0323858880
Category : Computers
Languages : en
Pages : 544
Book Description
Deep Learning for Medical Image Analysis, Second Edition is a great learning resource for academic and industry researchers and graduate students taking courses on machine learning and deep learning for computer vision and medical image computing and analysis. Deep learning provides exciting solutions for medical image analysis problems and is a key method for future applications. This book gives a clear understanding of the principles and methods of neural network and deep learning concepts, showing how the algorithms that integrate deep learning as a core component are applied to medical image detection, segmentation, registration, and computer-aided analysis.· Covers common research problems in medical image analysis and their challenges · Describes the latest deep learning methods and the theories behind approaches for medical image analysis · Teaches how algorithms are applied to a broad range of application areas including cardiac, neural and functional, colonoscopy, OCTA applications and model assessment · Includes a Foreword written by Nicholas Ayache
Publisher: Academic Press
ISBN: 0323858880
Category : Computers
Languages : en
Pages : 544
Book Description
Deep Learning for Medical Image Analysis, Second Edition is a great learning resource for academic and industry researchers and graduate students taking courses on machine learning and deep learning for computer vision and medical image computing and analysis. Deep learning provides exciting solutions for medical image analysis problems and is a key method for future applications. This book gives a clear understanding of the principles and methods of neural network and deep learning concepts, showing how the algorithms that integrate deep learning as a core component are applied to medical image detection, segmentation, registration, and computer-aided analysis.· Covers common research problems in medical image analysis and their challenges · Describes the latest deep learning methods and the theories behind approaches for medical image analysis · Teaches how algorithms are applied to a broad range of application areas including cardiac, neural and functional, colonoscopy, OCTA applications and model assessment · Includes a Foreword written by Nicholas Ayache
Computer Vision In Medical Imaging
Author: Chi Hau Chen
Publisher: World Scientific
ISBN: 9814460958
Category : Computers
Languages : en
Pages : 410
Book Description
The major progress in computer vision allows us to make extensive use of medical imaging data to provide us better diagnosis, treatment and predication of diseases. Computer vision can exploit texture, shape, contour and prior knowledge along with contextual information from image sequence and provide 3D and 4D information that helps with better human understanding. Many powerful tools have been available through image segmentation, machine learning, pattern classification, tracking, reconstruction to bring much needed quantitative information not easily available by trained human specialists. The aim of the book is for both medical imaging professionals to acquire and interpret the data, and computer vision professionals to provide enhanced medical information by using computer vision techniques. The final objective is to benefit the patients without adding to the already high medical costs.
Publisher: World Scientific
ISBN: 9814460958
Category : Computers
Languages : en
Pages : 410
Book Description
The major progress in computer vision allows us to make extensive use of medical imaging data to provide us better diagnosis, treatment and predication of diseases. Computer vision can exploit texture, shape, contour and prior knowledge along with contextual information from image sequence and provide 3D and 4D information that helps with better human understanding. Many powerful tools have been available through image segmentation, machine learning, pattern classification, tracking, reconstruction to bring much needed quantitative information not easily available by trained human specialists. The aim of the book is for both medical imaging professionals to acquire and interpret the data, and computer vision professionals to provide enhanced medical information by using computer vision techniques. The final objective is to benefit the patients without adding to the already high medical costs.
Health Informatics: A Computational Perspective in Healthcare
Author: Ripon Patgiri
Publisher: Springer Nature
ISBN: 9811597359
Category : Technology & Engineering
Languages : en
Pages : 384
Book Description
This book presents innovative research works to demonstrate the potential and the advancements of computing approaches to utilize healthcare centric and medical datasets in solving complex healthcare problems. Computing technique is one of the key technologies that are being currently used to perform medical diagnostics in the healthcare domain, thanks to the abundance of medical data being generated and collected. Nowadays, medical data is available in many different forms like MRI images, CT scan images, EHR data, test reports, histopathological data and doctor patient conversation data. This opens up huge opportunities for the application of computing techniques, to derive data-driven models that can be of very high utility, in terms of providing effective treatment to patients. Moreover, machine learning algorithms can uncover hidden patterns and relationships present in medical datasets, which are too complex to uncover, if a data-driven approach is not taken. With the help of computing systems, today, it is possible for researchers to predict an accurate medical diagnosis for new patients, using models built from previous patient data. Apart from automatic diagnostic tasks, computing techniques have also been applied in the process of drug discovery, by which a lot of time and money can be saved. Utilization of genomic data using various computing techniques is another emerging area, which may in fact be the key to fulfilling the dream of personalized medications. Medical prognostics is another area in which machine learning has shown great promise recently, where automatic prognostic models are being built that can predict the progress of the disease, as well as can suggest the potential treatment paths to get ahead of the disease progression.
Publisher: Springer Nature
ISBN: 9811597359
Category : Technology & Engineering
Languages : en
Pages : 384
Book Description
This book presents innovative research works to demonstrate the potential and the advancements of computing approaches to utilize healthcare centric and medical datasets in solving complex healthcare problems. Computing technique is one of the key technologies that are being currently used to perform medical diagnostics in the healthcare domain, thanks to the abundance of medical data being generated and collected. Nowadays, medical data is available in many different forms like MRI images, CT scan images, EHR data, test reports, histopathological data and doctor patient conversation data. This opens up huge opportunities for the application of computing techniques, to derive data-driven models that can be of very high utility, in terms of providing effective treatment to patients. Moreover, machine learning algorithms can uncover hidden patterns and relationships present in medical datasets, which are too complex to uncover, if a data-driven approach is not taken. With the help of computing systems, today, it is possible for researchers to predict an accurate medical diagnosis for new patients, using models built from previous patient data. Apart from automatic diagnostic tasks, computing techniques have also been applied in the process of drug discovery, by which a lot of time and money can be saved. Utilization of genomic data using various computing techniques is another emerging area, which may in fact be the key to fulfilling the dream of personalized medications. Medical prognostics is another area in which machine learning has shown great promise recently, where automatic prognostic models are being built that can predict the progress of the disease, as well as can suggest the potential treatment paths to get ahead of the disease progression.
Image and Signal Processing
Author: Abderrahim El Moataz
Publisher: Springer Nature
ISBN: 303051935X
Category : Computers
Languages : en
Pages : 388
Book Description
This volume constitutes the refereed proceedings of the 9th International Conference on Image and Signal Processing, ICISP 2020, which was due to be held in Marrakesh, Morocco, in June 2020. The conference was cancelled due to the COVID-19 pandemic. The 40 revised full papers were carefully reviewed and selected from 84 submissions. The contributions presented in this volume were organized in the following topical sections: digital cultural heritage & color and spectral imaging; data and image processing for precision agriculture; machine learning application and innovation; biomedical imaging; deep learning and applications; pattern recognition; segmentation and retrieval; mathematical imaging & signal processing.
Publisher: Springer Nature
ISBN: 303051935X
Category : Computers
Languages : en
Pages : 388
Book Description
This volume constitutes the refereed proceedings of the 9th International Conference on Image and Signal Processing, ICISP 2020, which was due to be held in Marrakesh, Morocco, in June 2020. The conference was cancelled due to the COVID-19 pandemic. The 40 revised full papers were carefully reviewed and selected from 84 submissions. The contributions presented in this volume were organized in the following topical sections: digital cultural heritage & color and spectral imaging; data and image processing for precision agriculture; machine learning application and innovation; biomedical imaging; deep learning and applications; pattern recognition; segmentation and retrieval; mathematical imaging & signal processing.
Deep Learning and Convolutional Neural Networks for Medical Image Computing
Author: Le Lu
Publisher: Springer
ISBN: 331942999X
Category : Computers
Languages : en
Pages : 327
Book Description
This book presents a detailed review of the state of the art in deep learning approaches for semantic object detection and segmentation in medical image computing, and large-scale radiology database mining. A particular focus is placed on the application of convolutional neural networks, with the theory supported by practical examples. Features: highlights how the use of deep neural networks can address new questions and protocols, as well as improve upon existing challenges in medical image computing; discusses the insightful research experience of Dr. Ronald M. Summers; presents a comprehensive review of the latest research and literature; describes a range of different methods that make use of deep learning for object or landmark detection tasks in 2D and 3D medical imaging; examines a varied selection of techniques for semantic segmentation using deep learning principles in medical imaging; introduces a novel approach to interleaved text and image deep mining on a large-scale radiology image database.
Publisher: Springer
ISBN: 331942999X
Category : Computers
Languages : en
Pages : 327
Book Description
This book presents a detailed review of the state of the art in deep learning approaches for semantic object detection and segmentation in medical image computing, and large-scale radiology database mining. A particular focus is placed on the application of convolutional neural networks, with the theory supported by practical examples. Features: highlights how the use of deep neural networks can address new questions and protocols, as well as improve upon existing challenges in medical image computing; discusses the insightful research experience of Dr. Ronald M. Summers; presents a comprehensive review of the latest research and literature; describes a range of different methods that make use of deep learning for object or landmark detection tasks in 2D and 3D medical imaging; examines a varied selection of techniques for semantic segmentation using deep learning principles in medical imaging; introduces a novel approach to interleaved text and image deep mining on a large-scale radiology image database.
Learning Deep Architectures for AI
Author: Yoshua Bengio
Publisher: Now Publishers Inc
ISBN: 1601982941
Category : Computational learning theory
Languages : en
Pages : 145
Book Description
Theoretical results suggest that in order to learn the kind of complicated functions that can represent high-level abstractions (e.g. in vision, language, and other AI-level tasks), one may need deep architectures. Deep architectures are composed of multiple levels of non-linear operations, such as in neural nets with many hidden layers or in complicated propositional formulae re-using many sub-formulae. Searching the parameter space of deep architectures is a difficult task, but learning algorithms such as those for Deep Belief Networks have recently been proposed to tackle this problem with notable success, beating the state-of-the-art in certain areas. This paper discusses the motivations and principles regarding learning algorithms for deep architectures, in particular those exploiting as building blocks unsupervised learning of single-layer models such as Restricted Boltzmann Machines, used to construct deeper models such as Deep Belief Networks.
Publisher: Now Publishers Inc
ISBN: 1601982941
Category : Computational learning theory
Languages : en
Pages : 145
Book Description
Theoretical results suggest that in order to learn the kind of complicated functions that can represent high-level abstractions (e.g. in vision, language, and other AI-level tasks), one may need deep architectures. Deep architectures are composed of multiple levels of non-linear operations, such as in neural nets with many hidden layers or in complicated propositional formulae re-using many sub-formulae. Searching the parameter space of deep architectures is a difficult task, but learning algorithms such as those for Deep Belief Networks have recently been proposed to tackle this problem with notable success, beating the state-of-the-art in certain areas. This paper discusses the motivations and principles regarding learning algorithms for deep architectures, in particular those exploiting as building blocks unsupervised learning of single-layer models such as Restricted Boltzmann Machines, used to construct deeper models such as Deep Belief Networks.
Medical Image Analysis
Author: Alejandro Frangi
Publisher: Academic Press
ISBN: 0128136588
Category : Technology & Engineering
Languages : en
Pages : 700
Book Description
Medical Image Analysis presents practical knowledge on medical image computing and analysis as written by top educators and experts. This text is a modern, practical, self-contained reference that conveys a mix of fundamental methodological concepts within different medical domains. Sections cover core representations and properties of digital images and image enhancement techniques, advanced image computing methods (including segmentation, registration, motion and shape analysis), machine learning, how medical image computing (MIC) is used in clinical and medical research, and how to identify alternative strategies and employ software tools to solve typical problems in MIC. - An authoritative presentation of key concepts and methods from experts in the field - Sections clearly explaining key methodological principles within relevant medical applications - Self-contained chapters enable the text to be used on courses with differing structures - A representative selection of modern topics and techniques in medical image computing - Focus on medical image computing as an enabling technology to tackle unmet clinical needs - Presentation of traditional and machine learning approaches to medical image computing
Publisher: Academic Press
ISBN: 0128136588
Category : Technology & Engineering
Languages : en
Pages : 700
Book Description
Medical Image Analysis presents practical knowledge on medical image computing and analysis as written by top educators and experts. This text is a modern, practical, self-contained reference that conveys a mix of fundamental methodological concepts within different medical domains. Sections cover core representations and properties of digital images and image enhancement techniques, advanced image computing methods (including segmentation, registration, motion and shape analysis), machine learning, how medical image computing (MIC) is used in clinical and medical research, and how to identify alternative strategies and employ software tools to solve typical problems in MIC. - An authoritative presentation of key concepts and methods from experts in the field - Sections clearly explaining key methodological principles within relevant medical applications - Self-contained chapters enable the text to be used on courses with differing structures - A representative selection of modern topics and techniques in medical image computing - Focus on medical image computing as an enabling technology to tackle unmet clinical needs - Presentation of traditional and machine learning approaches to medical image computing