Estuarine Habitats for Juvenile Salmon in the Tidally-influenced Lower Columbia River and Estuary PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Estuarine Habitats for Juvenile Salmon in the Tidally-influenced Lower Columbia River and Estuary PDF full book. Access full book title Estuarine Habitats for Juvenile Salmon in the Tidally-influenced Lower Columbia River and Estuary by Antonio M. Baptista. Download full books in PDF and EPUB format.

Estuarine Habitats for Juvenile Salmon in the Tidally-influenced Lower Columbia River and Estuary

Estuarine Habitats for Juvenile Salmon in the Tidally-influenced Lower Columbia River and Estuary PDF Author: Antonio M. Baptista
Publisher:
ISBN:
Category : Fish habitat improvement
Languages : en
Pages : 0

Book Description


Estuarine Habitats for Juvenile Salmon in the Tidally-influenced Lower Columbia River and Estuary

Estuarine Habitats for Juvenile Salmon in the Tidally-influenced Lower Columbia River and Estuary PDF Author: Antonio M. Baptista
Publisher:
ISBN:
Category : Fish habitat improvement
Languages : en
Pages : 0

Book Description


Estuarine Habitats for Juvenile Salmon in the Tidally-Influenced Lower Columbia River and Estuary

Estuarine Habitats for Juvenile Salmon in the Tidally-Influenced Lower Columbia River and Estuary PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 12

Book Description
This work focuses on the numerical modeling of Columbia River estuarine circulation and associated modeling-supported analyses conducted as an integral part of a multi-disciplinary and multi-institutional effort led by NOAA's Northwest Fisheries Science Center. The overall effort is aimed at: (1) retrospective analyses to reconstruct historic bathymetric features and assess effects of climate and river flow on the extent and distribution of shallow water, wetland and tidal-floodplain habitats; (2) computer simulations using a 3-dimensional numerical model to evaluate the sensitivity of salmon rearing opportunities to various historical modifications affecting the estuary (including channel changes, flow regulation, and diking of tidal wetlands and floodplains); (3) observational studies of present and historic food web sources supporting selected life histories of juvenile salmon as determined by stable isotope, microchemistry, and parasitology techniques; and (4) experimental studies in Grays River in collaboration with Columbia River Estuary Study Taskforce (CREST) and the Columbia Land Trust (CLT) to assess effects of multiple tidal wetland restoration projects on various life histories of juvenile salmon and to compare responses to observed habitat-use patterns in the mainstem estuary. From the above observations, experiments, and additional modeling simulations, the effort will also (5) examine effects of alternative flow-management and habitat-restoration scenarios on habitat opportunity and the estuary's productive capacity for juvenile salmon. The underlying modeling system is part of the SATURN1coastal-margin observatory [1]. SATURN relies on 3D numerical models [2, 3] to systematically simulate and understand baroclinic circulation in the Columbia River estuary-plume-shelf system [4-7] (Fig. 1). Multi-year simulation databases of circulation are produced as an integral part of SATURN, and have multiple applications in understanding estuary/plume variability, the role of the estuary and plume on salmon survival, and functional changes in the estuary-plume system in response to climate and human activities.

Historic Habitat Opportunities and Food-Web Linkages of Juvenile Salmon in the Columbia River Estuary, Annual Report of Research

Historic Habitat Opportunities and Food-Web Linkages of Juvenile Salmon in the Columbia River Estuary, Annual Report of Research PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 19

Book Description
In 2002 with support from the U.S. Army Corps of Engineers (USACE), an interagency research team began investigating salmon life histories and habitat use in the lower Columbia River estuary to fill significant data gaps about the estuary's potential role in salmon decline and recovery . The Bonneville Power Administration (BPA) provided additional funding in 2004 to reconstruct historical changes in estuarine habitat opportunities and food web linkages of Columbia River salmon (Onchorhynchus spp.). Together these studies constitute the estuary's first comprehensive investigation of shallow-water habitats, including selected emergent, forested, and scrub-shrub wetlands. Among other findings, this research documented the importance of wetlands as nursery areas for juvenile salmon; quantified historical changes in the amounts and distributions of diverse habitat types in the lower estuary; documented estuarine residence times, ranging from weeks to months for many juvenile Chinook salmon (O. tshawytscha); and provided new evidence that contemporary salmonid food webs are supported disproportionately by wetland-derived prey resources. The results of these lower-estuary investigations also raised many new questions about habitat functions, historical habitat distributions, and salmon life histories in other areas of the Columbia River estuary that have not been adequately investigated. For example, quantitative estimates of historical habitat changes are available only for the lower 75 km of the estuary, although tidal influence extends 217 km upriver to Bonneville Dam. Because the otolith techniques used to reconstruct salmon life histories rely on detection of a chemical signature (strontium) for salt water, the estuarine residency information we have collected to date applies only to the lower 30 or 35 km of the estuary, where fish first encounter ocean water. We lack information about salmon habitat use, life histories, and growth within the long tidal-fresh reaches of the main-stem river and many tidally-influenced estuary tributaries. Finally, our surveys to date characterize wetland habitats within island complexes distributed in the main channel of the lower estuary. Yet some of the most significant wetland losses have occurred along the estuary's periphery, including shoreline areas and tributary junctions. These habitats may or may not function similarly as the island complexes that we have surveyed to date. In 2007 we initiated a second phase of the BPA estuary study (Phase II) to address specific uncertainties about salmon in tidal-fresh and tributary habitats of the Columbia River estuary. This report summarizes 2007 and 2008 Phase II results and addresses three principal research questions: (1) What was the historic distribution of estuarine and floodplain habitats from Astoria to Bonneville Dam? (2) Do individual patterns of estuarine residency and growth of juvenile Chinook salmon vary among wetland habitat types along the estuarine tidal gradient? (3) Are salmon rearing opportunities and life histories in the restoring wetland landscape of lower Grays River similar to those documented for island complexes of the main-stem estuary? Phase II extended our analysis of historical habitat distribution in the estuary above Rkm 75 to near Bonneville Dam. For this analysis we digitized the original nineteenth-century topographic (T-sheets) and hydrographic (H-sheets) survey maps for the entire estuary. Although all T-sheets (Rkm 0 to Rkm 206) were converted to GIS in 2005 with support for the USACE estuary project, final reconstruction of historical habitats throughout the estuary requires completion of the remaining H-sheet GIS maps above Rkm 75 and their integration with the T-sheets. This report summarizes progress to date on compiling the upper estuary H-sheets above Rkm 75. For the USACE estuary project, we analyzed otoliths from Chinook salmon collected near the estuary mouth in 2003-05 to estimate variability in estuary residence times among juvenile out migrants. In Phase II we expanded these analyses to compare growth and residency among individuals collected in tidal-fresh water wetlands of the lower main-stem estuary. Although no known otolith structural or chemical indicators currently exist to define entry into tidal fresh environments, our previous analyses indicate that otolith barium concentrations frequently increase before individuals encounter salt water. Here we evaluate whether otolith barium levels may provide a valid indicator of tidal fresh water entry by Columbia River Chinook salmon. We also examine otolith growth increments to quantify and compare recent (i.e., the previous 30 d) growth rates among individuals sampled in different wetland habitats along the estuarine tidal gradient.

Historic Habitat Opportunities and Food-Web Linkages of Juvenile Salmon in the Columbia River Estuary and Their Implications for Managing River Flows and Restoring Estuarine Habitat, Physical Sciences Component, Progress Report

Historic Habitat Opportunities and Food-Web Linkages of Juvenile Salmon in the Columbia River Estuary and Their Implications for Managing River Flows and Restoring Estuarine Habitat, Physical Sciences Component, Progress Report PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 43

Book Description
Long-term changes and fluctuations in river flow, water properties, tides, and sediment transport in the Columbia River and its estuary have had a profound effect on Columbia River salmonids and their habitat. Understanding the river-flow, temperature, tidal, and sediment-supply regimes of the Lower Columbia River (LCR) and how they interact with habitat is, therefore, critical to development of system management and restoration strategies. It is also useful to separate management and climate impacts on hydrologic properties and habitat. This contract, part of a larger project led by the National Oceanic and Atmospheric Administration (NOAA), consists of three work elements, one with five tasks. The first work element relates to reconstruction of historic conditions in a broad sense. The second and third elements consist, respectively, of participation in project-wide integration efforts, and reporting. This report focuses on the five tasks within the historic reconstruction work element. It in part satisfies the reporting requirement, and it forms the basis for our participation in the project integration effort. The first task consists of several topics related to historic changes in river stage and tide. Within this task, the chart datum levels of 14 historic bathymetric surveys completed before definition of Columbia River Datum (CRD) were related to CRD, to enable analysis of these surveys by other project scientists. We have also modeled tidal datums and properties (lower low water or LLW, higher high water or HHW, mean water level or MWL, and greater diurnal tidal range or GDTR) as a function of river flow and tidal range at Astoria. These calculations have been carried for 10 year intervals (1940-date) for 21 stations, though most stations have data for only a few time intervals. Longer-term analyses involve the records at Astoria (1925-date) and Vancouver (1902-date). Water levels for any given river flow have decreased substantially (0.3-1.8 m, depending on river flow and tidal range), and tidal ranges have increased considerably (by a factor of 1.5 to 4 for most river-flow levels) since the 1900-1940 period at most stations, with the largest percentage changes occurring at upriver stations. These changes have been caused by a combination of changes in channel roughness, shape and alignment, changes in coastal tides, and (possibly) bed degradation. Tides are growing throughout the Northeast Pacific, and Astoria (Tongue Pt) has one of the most rapid rates of increase in tidal range in the entire Eastern Pacific, about 0.3m per century. More than half of this change appears to result from changes within the system, the rest from larger scale changes in coastal tides. Regression models of HHW have been used to estimate daily shallow water habitat (SWHA) available in a (almost equal to)25 mile long reach of the system from Eagle Cliff to Kalama for 1925-2004 under four different scenarios (the four possible combinations of diked/undiked and observed flow/ virgin flow). More than 70% of the habitat in this reach has been lost (modern conditions vs. virgin flow with not dikes). In contrast, however, to the reach between Skamokawa and Beaver, selective dike removal (instead of a combination of dike removal and flow restoration) would suffice to increase spring SWHA. The second task consists of reconstruction of the hydrologic cycle before 1878, based on historic documents and inversion of tidal data collected before the onset of the historic flow record in 1878. We have a complete list of freshet times and peak flows for 1858-1877, and scattered freshet information for 1841-1857. Based on tidal data, we have reconstructed the annual flow cycles for 1870 and 1871; other time periods between 1854 and 1867 are under analysis. The three remaining tasks relate to post-1878 hydrologic conditions (flows, sediment supply and water temperature), and separation of the human and climate influences thereon. Estimated ob-served (sometimes routed), adjusted (corrected for reservoir manipulation) and virgin (corrected also for irrigation diversion) flows for 1878-2004 have been compiled for the Columbia River at The Dalles and Beaver, and for the Willamette River at Portland. Sediment transports for the ob-served, adjusted and virgin flows have been calculated for 1878-2004 for the Columbia River at Vancouver and Beaver, for the Willamette River at Portland, and for other west-side tributaries seaward of Vancouver. For Vancouver and Portland, it has been possible to estimate sand trans-port (including gravel), fine sediment transport and total load. Only total load can be estimated at Beaver, and only fine sediment transport can be determined for the west-side tributaries, except for the post-1980 period influenced by the 1980 eruption of Mt St. Helens. Changes in flows and sediment transport due to flow regulation, irrigation diversion, and climate have been estimated.

Estuarine Habitat and Juvenile Salmon

Estuarine Habitat and Juvenile Salmon PDF Author: George Curtis Roegner
Publisher:
ISBN:
Category : Fishes
Languages : en
Pages : 62

Book Description


Estuarine Habitat and Juvenile Salmon

Estuarine Habitat and Juvenile Salmon PDF Author: George Curtis Roegner
Publisher:
ISBN:
Category : Fishes
Languages : en
Pages : 132

Book Description


Estuarine Habitat and Juvenile Salmon

Estuarine Habitat and Juvenile Salmon PDF Author:
Publisher:
ISBN:
Category : Fish populations
Languages : en
Pages :

Book Description


Crims Island Restoration and Monitoring of Juvenile Salmon Rearing Habitat in the Columbia River Estuary, Oregon, 2004-10

Crims Island Restoration and Monitoring of Juvenile Salmon Rearing Habitat in the Columbia River Estuary, Oregon, 2004-10 PDF Author: U.S. Department of the Interior
Publisher:
ISBN: 9781502525871
Category : Reference
Languages : en
Pages : 58

Book Description
Under the 2004 Biological Opinion for operation of the Federal Columbia River Power System released by the National Marine Fisheries Service, the U.S. Army Corps of Engineers (USACE), the Bonneville Power Administration (BPA), and the Bureau of Reclamation (Reclamation) were directed to restore more than 4,047 hectares (10,000 acres) of tidal marsh in the Columbia River estuary by 2010. Restoration of Crims Island near Longview, Washington, restored 38.1 hectares of marsh and swamp in the tidal freshwater portion of the lower Columbia River.

Salmon Life Histories, Habitat, and Food Webs in the Columbia River Estuary

Salmon Life Histories, Habitat, and Food Webs in the Columbia River Estuary PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 52

Book Description
From 2002 through 2006 we investigated historical and contemporary variations in juvenile Chinook salmon Oncorhynchus tshawytscha life histories, habitat associations, and food webs in the lower Columbia River estuary (mouth to rkm 101). At near-shore beach-seining sites in the estuary, Chinook salmon occurred during all months of the year, increasing in abundance from January through late spring or early summer and declining rapidly after July. Recently emerged fry dispersed throughout the estuary in early spring, and fry migrants were abundant in the estuary until April or May each year. Each spring, mean salmon size increased from the tidal freshwater zone to the estuary mouth; this trend may reflect estuarine growth and continued entry of smaller individuals from upriver. Most juvenile Chinook salmon in the mainstem estuary fed actively on adult insects and epibenthic amphipods Americorophium spp. Estimated growth rates of juvenile Chinook salmon derived from otolith analysis averaged 0.5 mm d-1, comparable to rates reported for juvenile salmon Oncorhynchus spp. in other Northwest estuaries. Estuarine salmon collections were composed of representatives from a diversity of evolutionarily significant units (ESUs) from the lower and upper Columbia Basin. Genetic stock groups in the estuary exhibited distinct seasonal and temporal abundance patterns, including a consistent peak in the Spring Creek Fall Chinook group in May, followed by a peak in the Western Cascades Fall Chinook group in July. The structure of acanthocephalan parasite assemblages in juvenile Chinook salmon from the tidal freshwater zone exhibited a consistent transition in June. This may have reflected changes in stock composition and associated habitat use and feeding histories. From March through July, subyearling Chinook salmon were among the most abundant species in all wetland habitat types (emergent, forested, and scrub/shrub) surveyed in the lower 100 km of the estuary. Salmon densities within wetland habitats fell to low levels by July, similar to the pattern observed at mainstem beach-seining sites and coincident with high water temperatures that approached or exceeded 19 C by mid-summer. Wetland habitats were used primarily by small subyearling Chinook salmon, with the smallest size ranges (i.e., rarely exceeding 70 mm by the end of the wetland rearing season) at scrub/shrub forested sites above rkm 50. Wetland sites of all types were utilized by a diversity of genetic stock groups, including less abundant groups such as Interior Summer/Fall Chinook.

Ecology of Juvenile Salmon in Shallow Tidal Freshwater Habitats in the Vicinity of the Sandy River Delta, Lower Columbia River, 2008

Ecology of Juvenile Salmon in Shallow Tidal Freshwater Habitats in the Vicinity of the Sandy River Delta, Lower Columbia River, 2008 PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description
The tidal freshwater monitoring (TFM) project reported herein is part of the research, monitoring, and evaluation effort developed by the Action Agencies (Bonneville Power Administration, the U.S. Army Corps of Engineers [USACE], and the U.S. Bureau of Reclamation) in response to obligations arising from the Endangered Species Act (ESA) as a result of operation of the Federal Columbia River Power System. The project is being performed under the auspices of the Northwest Power and Conservation Council's Columbia Basin Fish and Wildlife Program (Project No. 2005-001-00). The research is a collaborative effort among the Pacific Northwest National Laboratory, the Oregon Department of Fish and Wildlife, the National Marine Fisheries Service, and the University of Washington.