Author: Halbert White
Publisher: Cambridge University Press
ISBN: 9780521574464
Category : Business & Economics
Languages : en
Pages : 396
Book Description
This book examines the consequences of misspecifications for the interpretation of likelihood-based methods of statistical estimation and interference. The analysis concludes with an examination of methods by which the possibility of misspecification can be empirically investigated.
Estimation, Inference and Specification Analysis
Author: Halbert White
Publisher: Cambridge University Press
ISBN: 9780521574464
Category : Business & Economics
Languages : en
Pages : 396
Book Description
This book examines the consequences of misspecifications for the interpretation of likelihood-based methods of statistical estimation and interference. The analysis concludes with an examination of methods by which the possibility of misspecification can be empirically investigated.
Publisher: Cambridge University Press
ISBN: 9780521574464
Category : Business & Economics
Languages : en
Pages : 396
Book Description
This book examines the consequences of misspecifications for the interpretation of likelihood-based methods of statistical estimation and interference. The analysis concludes with an examination of methods by which the possibility of misspecification can be empirically investigated.
Topics in Advanced Econometrics
Author: Herman J. Bierens
Publisher: Cambridge University Press
ISBN: 9780521565110
Category : Business & Economics
Languages : en
Pages : 274
Book Description
A rigorous treatment of a number of timely topics in advanced econometrics.
Publisher: Cambridge University Press
ISBN: 9780521565110
Category : Business & Economics
Languages : en
Pages : 274
Book Description
A rigorous treatment of a number of timely topics in advanced econometrics.
The Refinement of Econometric Estimation and Test Procedures
Author: Garry D. A. Phillips
Publisher: Cambridge University Press
ISBN: 9781107406247
Category : Business & Economics
Languages : en
Pages : 418
Book Description
This book was first published in 2007. The small sample properties of estimators and tests are frequently too complex to be useful or are unknown. Much econometric theory is therefore developed for very large or asymptotic samples where it is assumed that the behaviour of estimators and tests will adequately represent their properties in small samples. Refined asymptotic methods adopt an intermediate position by providing improved approximations to small sample behaviour using asymptotic expansions. Dedicated to the memory of Michael Magdalinos, whose work is a major contribution to this area, this book contains chapters directly concerned with refined asymptotic methods. In addition, there are chapters focusing on new asymptotic results; the exploration through simulation of the small sample behaviour of estimators and tests in panel data models; and improvements in methodology. With contributions from leading econometricians, this collection will be essential reading for researchers and graduate students concerned with the use of asymptotic methods in econometric analysis.
Publisher: Cambridge University Press
ISBN: 9781107406247
Category : Business & Economics
Languages : en
Pages : 418
Book Description
This book was first published in 2007. The small sample properties of estimators and tests are frequently too complex to be useful or are unknown. Much econometric theory is therefore developed for very large or asymptotic samples where it is assumed that the behaviour of estimators and tests will adequately represent their properties in small samples. Refined asymptotic methods adopt an intermediate position by providing improved approximations to small sample behaviour using asymptotic expansions. Dedicated to the memory of Michael Magdalinos, whose work is a major contribution to this area, this book contains chapters directly concerned with refined asymptotic methods. In addition, there are chapters focusing on new asymptotic results; the exploration through simulation of the small sample behaviour of estimators and tests in panel data models; and improvements in methodology. With contributions from leading econometricians, this collection will be essential reading for researchers and graduate students concerned with the use of asymptotic methods in econometric analysis.
Statistical Inference as Severe Testing
Author: Deborah G. Mayo
Publisher: Cambridge University Press
ISBN: 1108563309
Category : Mathematics
Languages : en
Pages : 503
Book Description
Mounting failures of replication in social and biological sciences give a new urgency to critically appraising proposed reforms. This book pulls back the cover on disagreements between experts charged with restoring integrity to science. It denies two pervasive views of the role of probability in inference: to assign degrees of belief, and to control error rates in a long run. If statistical consumers are unaware of assumptions behind rival evidence reforms, they can't scrutinize the consequences that affect them (in personalized medicine, psychology, etc.). The book sets sail with a simple tool: if little has been done to rule out flaws in inferring a claim, then it has not passed a severe test. Many methods advocated by data experts do not stand up to severe scrutiny and are in tension with successful strategies for blocking or accounting for cherry picking and selective reporting. Through a series of excursions and exhibits, the philosophy and history of inductive inference come alive. Philosophical tools are put to work to solve problems about science and pseudoscience, induction and falsification.
Publisher: Cambridge University Press
ISBN: 1108563309
Category : Mathematics
Languages : en
Pages : 503
Book Description
Mounting failures of replication in social and biological sciences give a new urgency to critically appraising proposed reforms. This book pulls back the cover on disagreements between experts charged with restoring integrity to science. It denies two pervasive views of the role of probability in inference: to assign degrees of belief, and to control error rates in a long run. If statistical consumers are unaware of assumptions behind rival evidence reforms, they can't scrutinize the consequences that affect them (in personalized medicine, psychology, etc.). The book sets sail with a simple tool: if little has been done to rule out flaws in inferring a claim, then it has not passed a severe test. Many methods advocated by data experts do not stand up to severe scrutiny and are in tension with successful strategies for blocking or accounting for cherry picking and selective reporting. Through a series of excursions and exhibits, the philosophy and history of inductive inference come alive. Philosophical tools are put to work to solve problems about science and pseudoscience, induction and falsification.
The Econometric Analysis of Network Data
Author: Bryan Graham
Publisher: Academic Press
ISBN: 0128117710
Category : Business & Economics
Languages : en
Pages : 244
Book Description
The Econometric Analysis of Network Data serves as an entry point for advanced students, researchers, and data scientists seeking to perform effective analyses of networks, especially inference problems. It introduces the key results and ideas in an accessible, yet rigorous way. While a multi-contributor reference, the work is tightly focused and disciplined, providing latitude for varied specialties in one authorial voice.
Publisher: Academic Press
ISBN: 0128117710
Category : Business & Economics
Languages : en
Pages : 244
Book Description
The Econometric Analysis of Network Data serves as an entry point for advanced students, researchers, and data scientists seeking to perform effective analyses of networks, especially inference problems. It introduces the key results and ideas in an accessible, yet rigorous way. While a multi-contributor reference, the work is tightly focused and disciplined, providing latitude for varied specialties in one authorial voice.
Developing a Protocol for Observational Comparative Effectiveness Research: A User's Guide
Author: Agency for Health Care Research and Quality (U.S.)
Publisher: Government Printing Office
ISBN: 1587634236
Category : Medical
Languages : en
Pages : 236
Book Description
This User’s Guide is a resource for investigators and stakeholders who develop and review observational comparative effectiveness research protocols. It explains how to (1) identify key considerations and best practices for research design; (2) build a protocol based on these standards and best practices; and (3) judge the adequacy and completeness of a protocol. Eleven chapters cover all aspects of research design, including: developing study objectives, defining and refining study questions, addressing the heterogeneity of treatment effect, characterizing exposure, selecting a comparator, defining and measuring outcomes, and identifying optimal data sources. Checklists of guidance and key considerations for protocols are provided at the end of each chapter. The User’s Guide was created by researchers affiliated with AHRQ’s Effective Health Care Program, particularly those who participated in AHRQ’s DEcIDE (Developing Evidence to Inform Decisions About Effectiveness) program. Chapters were subject to multiple internal and external independent reviews. More more information, please consult the Agency website: www.effectivehealthcare.ahrq.gov)
Publisher: Government Printing Office
ISBN: 1587634236
Category : Medical
Languages : en
Pages : 236
Book Description
This User’s Guide is a resource for investigators and stakeholders who develop and review observational comparative effectiveness research protocols. It explains how to (1) identify key considerations and best practices for research design; (2) build a protocol based on these standards and best practices; and (3) judge the adequacy and completeness of a protocol. Eleven chapters cover all aspects of research design, including: developing study objectives, defining and refining study questions, addressing the heterogeneity of treatment effect, characterizing exposure, selecting a comparator, defining and measuring outcomes, and identifying optimal data sources. Checklists of guidance and key considerations for protocols are provided at the end of each chapter. The User’s Guide was created by researchers affiliated with AHRQ’s Effective Health Care Program, particularly those who participated in AHRQ’s DEcIDE (Developing Evidence to Inform Decisions About Effectiveness) program. Chapters were subject to multiple internal and external independent reviews. More more information, please consult the Agency website: www.effectivehealthcare.ahrq.gov)
The SAGE Handbook of Regression Analysis and Causal Inference
Author: Henning Best
Publisher: SAGE
ISBN: 1473908353
Category : Social Science
Languages : en
Pages : 425
Book Description
′The editors of the new SAGE Handbook of Regression Analysis and Causal Inference have assembled a wide-ranging, high-quality, and timely collection of articles on topics of central importance to quantitative social research, many written by leaders in the field. Everyone engaged in statistical analysis of social-science data will find something of interest in this book.′ - John Fox, Professor, Department of Sociology, McMaster University ′The authors do a great job in explaining the various statistical methods in a clear and simple way - focussing on fundamental understanding, interpretation of results, and practical application - yet being precise in their exposition.′ - Ben Jann, Executive Director, Institute of Sociology, University of Bern ′Best and Wolf have put together a powerful collection, especially valuable in its separate discussions of uses for both cross-sectional and panel data analysis.′ -Tom Smith, Senior Fellow, NORC, University of Chicago Edited and written by a team of leading international social scientists, this Handbook provides a comprehensive introduction to multivariate methods. The Handbook focuses on regression analysis of cross-sectional and longitudinal data with an emphasis on causal analysis, thereby covering a large number of different techniques including selection models, complex samples, and regression discontinuities. Each Part starts with a non-mathematical introduction to the method covered in that section, giving readers a basic knowledge of the method’s logic, scope and unique features. Next, the mathematical and statistical basis of each method is presented along with advanced aspects. Using real-world data from the European Social Survey (ESS) and the Socio-Economic Panel (GSOEP), the book provides a comprehensive discussion of each method’s application, making this an ideal text for PhD students and researchers embarking on their own data analysis.
Publisher: SAGE
ISBN: 1473908353
Category : Social Science
Languages : en
Pages : 425
Book Description
′The editors of the new SAGE Handbook of Regression Analysis and Causal Inference have assembled a wide-ranging, high-quality, and timely collection of articles on topics of central importance to quantitative social research, many written by leaders in the field. Everyone engaged in statistical analysis of social-science data will find something of interest in this book.′ - John Fox, Professor, Department of Sociology, McMaster University ′The authors do a great job in explaining the various statistical methods in a clear and simple way - focussing on fundamental understanding, interpretation of results, and practical application - yet being precise in their exposition.′ - Ben Jann, Executive Director, Institute of Sociology, University of Bern ′Best and Wolf have put together a powerful collection, especially valuable in its separate discussions of uses for both cross-sectional and panel data analysis.′ -Tom Smith, Senior Fellow, NORC, University of Chicago Edited and written by a team of leading international social scientists, this Handbook provides a comprehensive introduction to multivariate methods. The Handbook focuses on regression analysis of cross-sectional and longitudinal data with an emphasis on causal analysis, thereby covering a large number of different techniques including selection models, complex samples, and regression discontinuities. Each Part starts with a non-mathematical introduction to the method covered in that section, giving readers a basic knowledge of the method’s logic, scope and unique features. Next, the mathematical and statistical basis of each method is presented along with advanced aspects. Using real-world data from the European Social Survey (ESS) and the Socio-Economic Panel (GSOEP), the book provides a comprehensive discussion of each method’s application, making this an ideal text for PhD students and researchers embarking on their own data analysis.
Modeling Ordered Choices
Author: William H. Greene
Publisher: Cambridge University Press
ISBN: 1139485954
Category : Business & Economics
Languages : en
Pages : 383
Book Description
It is increasingly common for analysts to seek out the opinions of individuals and organizations using attitudinal scales such as degree of satisfaction or importance attached to an issue. Examples include levels of obesity, seriousness of a health condition, attitudes towards service levels, opinions on products, voting intentions, and the degree of clarity of contracts. Ordered choice models provide a relevant methodology for capturing the sources of influence that explain the choice made amongst a set of ordered alternatives. The methods have evolved to a level of sophistication that can allow for heterogeneity in the threshold parameters, in the explanatory variables (through random parameters), and in the decomposition of the residual variance. This book brings together contributions in ordered choice modeling from a number of disciplines, synthesizing developments over the last fifty years, and suggests useful extensions to account for the wide range of sources of influence on choice.
Publisher: Cambridge University Press
ISBN: 1139485954
Category : Business & Economics
Languages : en
Pages : 383
Book Description
It is increasingly common for analysts to seek out the opinions of individuals and organizations using attitudinal scales such as degree of satisfaction or importance attached to an issue. Examples include levels of obesity, seriousness of a health condition, attitudes towards service levels, opinions on products, voting intentions, and the degree of clarity of contracts. Ordered choice models provide a relevant methodology for capturing the sources of influence that explain the choice made amongst a set of ordered alternatives. The methods have evolved to a level of sophistication that can allow for heterogeneity in the threshold parameters, in the explanatory variables (through random parameters), and in the decomposition of the residual variance. This book brings together contributions in ordered choice modeling from a number of disciplines, synthesizing developments over the last fifty years, and suggests useful extensions to account for the wide range of sources of influence on choice.
The Econometric Analysis of Transition Data
Author: Tony Lancaster
Publisher: Cambridge University Press
ISBN: 9780521437899
Category : Business & Economics
Languages : en
Pages : 380
Book Description
This book presents statistical methods for analysis of the duration of events. The primary focus is on models for single-spell data, events in which individual agents are observed for a single duration. Some attention is also given to multiple-spell data. The first part of the book covers model specification, including both structural and reduced form models and models with and without neglected heterogeneity. The book next deals with likelihood based inference about such models, with sections on full and semiparametric specification. A final section treats graphical and numerical methods of specification testing. This is the first published exposition of current econometric methods for the study of duration data.
Publisher: Cambridge University Press
ISBN: 9780521437899
Category : Business & Economics
Languages : en
Pages : 380
Book Description
This book presents statistical methods for analysis of the duration of events. The primary focus is on models for single-spell data, events in which individual agents are observed for a single duration. Some attention is also given to multiple-spell data. The first part of the book covers model specification, including both structural and reduced form models and models with and without neglected heterogeneity. The book next deals with likelihood based inference about such models, with sections on full and semiparametric specification. A final section treats graphical and numerical methods of specification testing. This is the first published exposition of current econometric methods for the study of duration data.
Econometric Modelling with Time Series
Author: Vance Martin
Publisher: Cambridge University Press
ISBN: 0521139813
Category : Business & Economics
Languages : en
Pages : 925
Book Description
"Maximum likelihood estimation is a general method for estimating the parameters of econometric models from observed data. The principle of maximum likelihood plays a central role in the exposition of this book, since a number of estimators used in econometrics can be derived within this framework. Examples include ordinary least squares, generalized least squares and full-information maximum likelihood. In deriving the maximum likelihood estimator, a key concept is the joint probability density function (pdf) of the observed random variables, yt. Maximum likelihood estimation requires that the following conditions are satisfied. (1) The form of the joint pdf of yt is known. (2) The specification of the moments of the joint pdf are known. (3) The joint pdf can be evaluated for all values of the parameters, 9. Parts ONE and TWO of this book deal with models in which all these conditions are satisfied. Part THREE investigates models in which these conditions are not satisfied and considers four important cases. First, if the distribution of yt is misspecified, resulting in both conditions 1 and 2 being violated, estimation is by quasi-maximum likelihood (Chapter 9). Second, if condition 1 is not satisfied, a generalized method of moments estimator (Chapter 10) is required. Third, if condition 2 is not satisfied, estimation relies on nonparametric methods (Chapter 11). Fourth, if condition 3 is violated, simulation-based estimation methods are used (Chapter 12). 1.2 Motivating Examples To highlight the role of probability distributions in maximum likelihood estimation, this section emphasizes the link between observed sample data and 4 The Maximum Likelihood Principle the probability distribution from which they are drawn"-- publisher.
Publisher: Cambridge University Press
ISBN: 0521139813
Category : Business & Economics
Languages : en
Pages : 925
Book Description
"Maximum likelihood estimation is a general method for estimating the parameters of econometric models from observed data. The principle of maximum likelihood plays a central role in the exposition of this book, since a number of estimators used in econometrics can be derived within this framework. Examples include ordinary least squares, generalized least squares and full-information maximum likelihood. In deriving the maximum likelihood estimator, a key concept is the joint probability density function (pdf) of the observed random variables, yt. Maximum likelihood estimation requires that the following conditions are satisfied. (1) The form of the joint pdf of yt is known. (2) The specification of the moments of the joint pdf are known. (3) The joint pdf can be evaluated for all values of the parameters, 9. Parts ONE and TWO of this book deal with models in which all these conditions are satisfied. Part THREE investigates models in which these conditions are not satisfied and considers four important cases. First, if the distribution of yt is misspecified, resulting in both conditions 1 and 2 being violated, estimation is by quasi-maximum likelihood (Chapter 9). Second, if condition 1 is not satisfied, a generalized method of moments estimator (Chapter 10) is required. Third, if condition 2 is not satisfied, estimation relies on nonparametric methods (Chapter 11). Fourth, if condition 3 is violated, simulation-based estimation methods are used (Chapter 12). 1.2 Motivating Examples To highlight the role of probability distributions in maximum likelihood estimation, this section emphasizes the link between observed sample data and 4 The Maximum Likelihood Principle the probability distribution from which they are drawn"-- publisher.