Estimation and Control of Dynamical Systems PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Estimation and Control of Dynamical Systems PDF full book. Access full book title Estimation and Control of Dynamical Systems by Alain Bensoussan. Download full books in PDF and EPUB format.

Estimation and Control of Dynamical Systems

Estimation and Control of Dynamical Systems PDF Author: Alain Bensoussan
Publisher: Springer
ISBN: 3319754564
Category : Mathematics
Languages : en
Pages : 547

Book Description
This book provides a comprehensive presentation of classical and advanced topics in estimation and control of dynamical systems with an emphasis on stochastic control. Many aspects which are not easily found in a single text are provided, such as connections between control theory and mathematical finance, as well as differential games. The book is self-contained and prioritizes concepts rather than full rigor, targeting scientists who want to use control theory in their research in applied mathematics, engineering, economics, and management science. Examples and exercises are included throughout, which will be useful for PhD courses and graduate courses in general. Dr. Alain Bensoussan is Lars Magnus Ericsson Chair at UT Dallas and Director of the International Center for Decision and Risk Analysis which develops risk management research as it pertains to large-investment industrial projects that involve new technologies, applications and markets. He is also Chair Professor at City University Hong Kong.

Estimation and Control of Dynamical Systems

Estimation and Control of Dynamical Systems PDF Author: Alain Bensoussan
Publisher: Springer
ISBN: 3319754564
Category : Mathematics
Languages : en
Pages : 547

Book Description
This book provides a comprehensive presentation of classical and advanced topics in estimation and control of dynamical systems with an emphasis on stochastic control. Many aspects which are not easily found in a single text are provided, such as connections between control theory and mathematical finance, as well as differential games. The book is self-contained and prioritizes concepts rather than full rigor, targeting scientists who want to use control theory in their research in applied mathematics, engineering, economics, and management science. Examples and exercises are included throughout, which will be useful for PhD courses and graduate courses in general. Dr. Alain Bensoussan is Lars Magnus Ericsson Chair at UT Dallas and Director of the International Center for Decision and Risk Analysis which develops risk management research as it pertains to large-investment industrial projects that involve new technologies, applications and markets. He is also Chair Professor at City University Hong Kong.

Continuous Time Dynamical Systems

Continuous Time Dynamical Systems PDF Author: B.M. Mohan
Publisher: CRC Press
ISBN: 1466517298
Category : Technology & Engineering
Languages : en
Pages : 250

Book Description
Optimal control deals with the problem of finding a control law for a given system such that a certain optimality criterion is achieved. An optimal control is a set of differential equations describing the paths of the control variables that minimize the cost functional. This book, Continuous Time Dynamical Systems: State Estimation and Optimal Control with Orthogonal Functions, considers different classes of systems with quadratic performance criteria. It then attempts to find the optimal control law for each class of systems using orthogonal functions that can optimize the given performance criteria. Illustrated throughout with detailed examples, the book covers topics including: Block-pulse functions and shifted Legendre polynomials State estimation of linear time-invariant systems Linear optimal control systems incorporating observers Optimal control of systems described by integro-differential equations Linear-quadratic-Gaussian control Optimal control of singular systems Optimal control of time-delay systems with and without reverse time terms Optimal control of second-order nonlinear systems Hierarchical control of linear time-invariant and time-varying systems

Optimal Estimation of Dynamic Systems

Optimal Estimation of Dynamic Systems PDF Author: John L. Crassidis
Publisher: CRC Press
ISBN: 0203509129
Category : Mathematics
Languages : en
Pages : 606

Book Description
Most newcomers to the field of linear stochastic estimation go through a difficult process in understanding and applying the theory.This book minimizes the process while introducing the fundamentals of optimal estimation. Optimal Estimation of Dynamic Systems explores topics that are important in the field of control where the signals receiv

Continuous Time Dynamical Systems

Continuous Time Dynamical Systems PDF Author: B.M. Mohan
Publisher: CRC Press
ISBN: 1466517301
Category : Technology & Engineering
Languages : en
Pages : 247

Book Description
Optimal control deals with the problem of finding a control law for a given system such that a certain optimality criterion is achieved. An optimal control is a set of differential equations describing the paths of the control variables that minimize the cost functional. This book, Continuous Time Dynamical Systems: State Estimation and Optimal Control with Orthogonal Functions, considers different classes of systems with quadratic performance criteria. It then attempts to find the optimal control law for each class of systems using orthogonal functions that can optimize the given performance criteria. Illustrated throughout with detailed examples, the book covers topics including: Block-pulse functions and shifted Legendre polynomials State estimation of linear time-invariant systems Linear optimal control systems incorporating observers Optimal control of systems described by integro-differential equations Linear-quadratic-Gaussian control Optimal control of singular systems Optimal control of time-delay systems with and without reverse time terms Optimal control of second-order nonlinear systems Hierarchical control of linear time-invariant and time-varying systems

Estimation and Control of Dynamical Systems with Applications to Multi-processor Systems

Estimation and Control of Dynamical Systems with Applications to Multi-processor Systems PDF Author: Haotian Zhang
Publisher:
ISBN:
Category : Kalman filtering
Languages : en
Pages : 118

Book Description
System and control theory is playing an increasingly important role in the design and analysis of computing systems. This thesis investigates a set of estimation and control problems that are driven by new challenges presented by next-generation Multi-Processor Systems on Chips (MPSoCs). Specifically, we consider problems related to state norm estimation, state estimation for positive systems, sensor selection, and nonlinear output tracking. Although these problems are motivated by applications to multi-processor systems, the corresponding theory and algorithms are developed for general dynamical systems. We first study state norm estimation for linear systems with unknown inputs. Specifically, we consider a formulation where the unknown inputs and initial condition of the system are bounded in magnitude, and the objective is to construct an unknown input norm-observer which estimates an upper bound for the norm of the states. This class of problems is motivated by the need to estimate the maximum temperature across a multi-core processor, based on a given model of the thermal dynamics. In order to characterize the existence of the norm observer, we propose a notion of bounded-input-bounded-output-bounded-state (BIBOBS) stability; this concept supplements various system properties, including bounded-input-bounded-output (BIBO) stability, bounded-input-bounded-state (BIBS) stability, and input-output-to-state stability (IOSS).We provide necessary and sufficient conditions on the system matrices under which a linear system is BIBOBS stable, and show that the set of modes of the system with magnitude 1 plays a key role. A construction for the unknown input norm-observer follows as a byproduct. Then we investigate the state estimation problem for positive linear systems with unknown inputs. This problem is also motivated by the need to monitor the temperature of a multi-processor system and the property of positivity arises due to the physical nature of the thermal model. We extend the concept of strong observability to positive systems and as a negative result, we show that the additional information on positivity does not help in state estimation. Since the states of the system are always positive, negative state estimates are meaningless and the positivity of the observers themselves may be desirable in certain applications. Moreover, positive systems possess certain desired robustness properties. Thus, for positive systems where state estimation with unknown inputs is possible, we provide a linear programming based design procedure for delayed positive observers. Next we consider the problem of selecting an optimal set of sensors to estimate the states of linear dynamical systems; in the context of multi-core processors, this problem arises due to the need to place thermal sensors in order to perform state estimation. The goal is to choose (at design-time) a subset of sensors (satisfying certain budget constraints) from a given set in order to minimize the trace of the steady state a priori or a posteriori error covariance produced by a Kalman filter. We show that the a priori and a posteriori error covariance-based sensor selection problems are both NP-hard, even under the additional assumption that the system is stable. We then provide bounds on the worst-case performance of sensor selection algorithms based on the system dynamics, and show that certain greedy algorithms are optimal for two classes of systems. However, as a negative result, we show that certain typical objective functions are not submodular or supermodular in general. While this makes it difficult to evaluate the performance of greedy algorithms for sensor selection (outside of certain special cases), we show via simulations that these greedy algorithms perform well in practice. Finally, we study the output tracking problem for nonlinear systems with constraints. This class of problems arises due to the need to optimize the energy consumption of the CPU-GPU subsystem in multi-processor systems while satisfying certain Quality of Service (QoS) requirements. In order for the system output to track a class of bounded reference signals with limited online computational resources, we propose a sampling-based explicit nonlinear model predictive control (ENMPC) approach, where only a bound on the admissible references is known to the designer a priori. The basic idea of sampling-based ENMPC is to sample the state and reference signal space using deterministic sampling and construct the ENMPC by using regression methods. The proposed approach guarantees feasibility and stability for all admissible references and ensures asymptotic convergence to the set-point. Furthermore, robustness through the use of an ancillary controller is added to the nominal ENMPC for a class of nonlinear systems with additive disturbances, where the robust controller keeps the system output close to the desired nominal trajectory.

Estimation and Control of Systems

Estimation and Control of Systems PDF Author: Theodore F. Elbert
Publisher: Van Nostrand Reinhold Company
ISBN:
Category : Technology & Engineering
Languages : en
Pages : 680

Book Description
Good,No Highlights,No Markup,all pages are intact, Slight Shelfwear,may have the corners slightly dented, may have slight color changes/slightly damaged spine.

Dynamics and Control

Dynamics and Control PDF Author: George Leitmann
Publisher: CRC Press
ISBN: 100015954X
Category : Science
Languages : en
Pages : 232

Book Description
This multi-authored volume presents selected papers from the Eighth Workshop on Dynamics and Control. Many of the papers represent significant advances in this area of research, and cover the development of control methods, including the control of dynamical systems subject to mixed constraints on both the control and state variables, and the development of a control design method for flexible manipulators with mismatched uncertainties. Advances in dynamic systems are presented, particularly in game-theoretic approaches and also the applications of dynamic systems methodology to social and environmental problems, for example, the concept of virtual biospheres in modeling climate change in terms of dynamical systems.

Estimation, Control, and the Discrete Kalman Filter

Estimation, Control, and the Discrete Kalman Filter PDF Author: Donald E. Catlin
Publisher: Springer Science & Business Media
ISBN: 1461245281
Category : Technology & Engineering
Languages : en
Pages : 286

Book Description
In 1960, R. E. Kalman published his celebrated paper on recursive min imum variance estimation in dynamical systems [14]. This paper, which introduced an algorithm that has since been known as the discrete Kalman filter, produced a virtual revolution in the field of systems engineering. Today, Kalman filters are used in such diverse areas as navigation, guid ance, oil drilling, water and air quality, and geodetic surveys. In addition, Kalman's work led to a multitude of books and papers on minimum vari ance estimation in dynamical systems, including one by Kalman and Bucy on continuous time systems [15]. Most of this work was done outside of the mathematics and statistics communities and, in the spirit of true academic parochialism, was, with a few notable exceptions, ignored by them. This text is my effort toward closing that chasm. For mathematics students, the Kalman filtering theorem is a beautiful illustration of functional analysis in action; Hilbert spaces being used to solve an extremely important problem in applied mathematics. For statistics students, the Kalman filter is a vivid example of Bayesian statistics in action. The present text grew out of a series of graduate courses given by me in the past decade. Most of these courses were given at the University of Mas sachusetts at Amherst.

Optimal Estimation of Dynamic Systems, Second Edition

Optimal Estimation of Dynamic Systems, Second Edition PDF Author: John L. Crassidis
Publisher: CRC Press
ISBN: 1439839859
Category : Mathematics
Languages : en
Pages : 752

Book Description
Optimal Estimation of Dynamic Systems, Second Edition highlights the importance of both physical and numerical modeling in solving dynamics-based estimation problems found in engineering systems. Accessible to engineering students, applied mathematicians, and practicing engineers, the text presents the central concepts and methods of optimal estimation theory and applies the methods to problems with varying degrees of analytical and numerical difficulty. Different approaches are often compared to show their absolute and relative utility. The authors also offer prototype algorithms to stimulate the development and proper use of efficient computer programs. MATLAB® codes for the examples are available on the book’s website. New to the Second Edition With more than 100 pages of new material, this reorganized edition expands upon the best-selling original to include comprehensive developments and updates. It incorporates new theoretical results, an entirely new chapter on advanced sequential state estimation, and additional examples and exercises. An ideal self-study guide for practicing engineers as well as senior undergraduate and beginning graduate students, the book introduces the fundamentals of estimation and helps newcomers to understand the relationships between the estimation and modeling of dynamical systems. It also illustrates the application of the theory to real-world situations, such as spacecraft attitude determination, GPS navigation, orbit determination, and aircraft tracking.

Estimation and Control of Chaotic Nonlinear Dynamical Systems Using Time Series Data

Estimation and Control of Chaotic Nonlinear Dynamical Systems Using Time Series Data PDF Author: Gang Chen
Publisher:
ISBN:
Category : Chaotic behavior in systems
Languages : en
Pages : 128

Book Description