Error Assessment of National Water Model Analysis & Assimilation and Short-range Forecasts PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Error Assessment of National Water Model Analysis & Assimilation and Short-range Forecasts PDF full book. Access full book title Error Assessment of National Water Model Analysis & Assimilation and Short-range Forecasts by Andrew Austin-Petersen. Download full books in PDF and EPUB format.

Error Assessment of National Water Model Analysis & Assimilation and Short-range Forecasts

Error Assessment of National Water Model Analysis & Assimilation and Short-range Forecasts PDF Author: Andrew Austin-Petersen
Publisher:
ISBN:
Category :
Languages : en
Pages : 144

Book Description
Flooding is the costliest natural disaster in the United States and tragically often leads to loss of life. Flood prediction, response and mitigation are therefore critical areas of research and have been for many decades. Hydrologic and hydraulic models are a key component of flood prediction methods and highly detailed models have been implemented in many areas of high risk which often correspond to areas with high population. However, the high cost and complexity of highly detailed models means that many areas of the US are not covered by flood prediction early warning systems. Recent increases in computational power and increased resolution and coverage of remotely sensed data have allowed for the development of a continental scale streamflow prediction system known as the National Water Model which is currently forecasting streamflow values for over 2.7 million stream reaches across the US. Flood inundation predictions can be derived from the National Water Model using digital elevation data to extract reach-scale rating curves and therefore river stage height. Using the height above nearest drainage method, flood inundation maps can be created from the stage height at relatively low computational cost at continental scale. The National Water Model is currently operating as a deterministic model for short-term predictions and does not currently include an estimate of the uncertainty in these predictions. The final streamflow values are at the end of a chain of models which originate from precipitation forecasts and go through rainfall-runoff and finally routing modules. The total uncertainty in the streamflow predictions is therefore a function of the uncertainty in each step. Uncertainty analysis commonly relies on an assessment of uncertainty in model parameters and boundary conditions, the use of perturbed inputs or through comparison of several different models of the same systems. Estimated uncertainty from the first model in a chain can then be propagated to the next model and so on until a final estimate is achieved. Unfortunately, the National Water Model is operated on a super computer and the details of the model are not available for perturbation analysis. One step in the National Water Model hourly cycle is the assimilation of USGS gage data which allows for corrections to the model state before the forecast simulation is made. This excludes USGS gage data from being used as a verification dataset. Even so, it is still an informative exercise to compare NWM predictions at these sites. There are numerous local and regional gaging stations which are not assimilated into the National Water Model and can be used as an independent check on the model output. Recent flooding in the Llano River basin in central Texas provides an opportunity to compare National Water Model predictions to both USGS and non-USGS gage readings. This thesis presents an assessment of the error in National Water Model predictions in the Llano River basin

Error Assessment of National Water Model Analysis & Assimilation and Short-range Forecasts

Error Assessment of National Water Model Analysis & Assimilation and Short-range Forecasts PDF Author: Andrew Austin-Petersen
Publisher:
ISBN:
Category :
Languages : en
Pages : 144

Book Description
Flooding is the costliest natural disaster in the United States and tragically often leads to loss of life. Flood prediction, response and mitigation are therefore critical areas of research and have been for many decades. Hydrologic and hydraulic models are a key component of flood prediction methods and highly detailed models have been implemented in many areas of high risk which often correspond to areas with high population. However, the high cost and complexity of highly detailed models means that many areas of the US are not covered by flood prediction early warning systems. Recent increases in computational power and increased resolution and coverage of remotely sensed data have allowed for the development of a continental scale streamflow prediction system known as the National Water Model which is currently forecasting streamflow values for over 2.7 million stream reaches across the US. Flood inundation predictions can be derived from the National Water Model using digital elevation data to extract reach-scale rating curves and therefore river stage height. Using the height above nearest drainage method, flood inundation maps can be created from the stage height at relatively low computational cost at continental scale. The National Water Model is currently operating as a deterministic model for short-term predictions and does not currently include an estimate of the uncertainty in these predictions. The final streamflow values are at the end of a chain of models which originate from precipitation forecasts and go through rainfall-runoff and finally routing modules. The total uncertainty in the streamflow predictions is therefore a function of the uncertainty in each step. Uncertainty analysis commonly relies on an assessment of uncertainty in model parameters and boundary conditions, the use of perturbed inputs or through comparison of several different models of the same systems. Estimated uncertainty from the first model in a chain can then be propagated to the next model and so on until a final estimate is achieved. Unfortunately, the National Water Model is operated on a super computer and the details of the model are not available for perturbation analysis. One step in the National Water Model hourly cycle is the assimilation of USGS gage data which allows for corrections to the model state before the forecast simulation is made. This excludes USGS gage data from being used as a verification dataset. Even so, it is still an informative exercise to compare NWM predictions at these sites. There are numerous local and regional gaging stations which are not assimilated into the National Water Model and can be used as an independent check on the model output. Recent flooding in the Llano River basin in central Texas provides an opportunity to compare National Water Model predictions to both USGS and non-USGS gage readings. This thesis presents an assessment of the error in National Water Model predictions in the Llano River basin

Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications (Vol. II)

Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications (Vol. II) PDF Author: Seon Ki Park
Publisher: Springer Science & Business Media
ISBN: 3642350887
Category : Science
Languages : en
Pages : 736

Book Description
This book contains the most recent progress in data assimilation in meteorology, oceanography and hydrology including land surface. It spans both theoretical and applicative aspects with various methodologies such as variational, Kalman filter, ensemble, Monte Carlo and artificial intelligence methods. Besides data assimilation, other important topics are also covered including targeting observation, sensitivity analysis, and parameter estimation. The book will be useful to individual researchers as well as graduate students for a reference in the field of data assimilation.

Assessment of Intraseasonal to Interannual Climate Prediction and Predictability

Assessment of Intraseasonal to Interannual Climate Prediction and Predictability PDF Author: National Research Council
Publisher: National Academies Press
ISBN: 0309161347
Category : Science
Languages : en
Pages : 193

Book Description
More accurate forecasts of climate conditions over time periods of weeks to a few years could help people plan agricultural activities, mitigate drought, and manage energy resources, amongst other activities; however, current forecast systems have limited ability on these time- scales. Models for such climate forecasts must take into account complex interactions among the ocean, atmosphere, and land surface. Such processes can be difficult to represent realistically. To improve the quality of forecasts, this book makes recommendations about the development of the tools used in forecasting and about specific research goals for improving understanding of sources of predictability. To improve the accessibility of these forecasts to decision-makers and researchers, this book also suggests best practices to improve how forecasts are made and disseminated.

A Muskingum-Cunge Channel Flow Routing Method for Drainage Networks

A Muskingum-Cunge Channel Flow Routing Method for Drainage Networks PDF Author: Jürgen Garbrecht
Publisher:
ISBN:
Category : Channels (Hydraulic engineering)
Languages : en
Pages : 40

Book Description


Precipitation: Advances in Measurement, Estimation and Prediction

Precipitation: Advances in Measurement, Estimation and Prediction PDF Author: Silas C. Michaelides
Publisher: Springer Science & Business Media
ISBN: 3540776559
Category : Science
Languages : en
Pages : 552

Book Description
This volume is the outcome of contributions from 51 scientists who were invited to expose their latest findings on precipitation research and in particular, on the measurement, estimation and prediction of precipitation. The reader is presented with a blend of theoretical, mathematical and technical treatise of precipitation science but also with authentic applications, ranging from local field experiments and country-scale campaigns to multinational space endeavors.

Calibration of Watershed Models

Calibration of Watershed Models PDF Author: Qingyun Duan
Publisher: John Wiley & Sons
ISBN: 087590355X
Category : Science
Languages : en
Pages : 356

Book Description
Published by the American Geophysical Union as part of the Water Science and Application Series, Volume 6. During the past four decades, computer-based mathematical models of watershed hydrology have been widely used for a variety of applications including hydrologic forecasting, hydrologic design, and water resources management. These models are based on general mathematical descriptions of the watershed processes that transform natural forcing (e.g., rainfall over the landscape) into response (e.g., runoff in the rivers). The user of a watershed hydrology model must specify the model parameters before the model is able to properly simulate the watershed behavior.

Flood Forecasting

Flood Forecasting PDF Author: Thomas E. Adams
Publisher: Academic Press
ISBN: 0128018593
Category : Nature
Languages : en
Pages : 485

Book Description
Flood Forecasting: A Global Perspective describes flood forecast systems and operations as they currently exist at national and regional centers around the globe, focusing on the technical aspects of flood forecast systems. This book includes the details of data flow, what data is used, quality control, the hydrologic and hydraulic models used, and the unique problems of each country or system, such as glacial dam failures, ice jams, sparse data, and ephemeral streams and rivers. Each chapter describes the system, including details about its strengths and weaknesses, and covers lessons learned. This helpful resource facilitates sharing knowledge that will lead to improvements of existing systems and provides a valuable reference to those wishing to develop new forecast systems by drawing on best practices. Covers global systems allowing readers to see a worldwide perspective with different approaches used by existing flood forecast systems Provides historical coverage allowing readers to understand why forecast systems have developed as they have and to see how specific systems have dealt with common problems encountered Presents a vision of what appears to be the future of hydrologic forecasting and difficulties facing hydrologic forecasting Provides a helpful resource to facilitate improvements to existing systems based on a best practices approach

Next Generation Earth System Prediction

Next Generation Earth System Prediction PDF Author: National Academies of Sciences, Engineering, and Medicine
Publisher: National Academies Press
ISBN: 0309388805
Category : Science
Languages : en
Pages : 351

Book Description
As the nation's economic activities, security concerns, and stewardship of natural resources become increasingly complex and globally interrelated, they become ever more sensitive to adverse impacts from weather, climate, and other natural phenomena. For several decades, forecasts with lead times of a few days for weather and other environmental phenomena have yielded valuable information to improve decision-making across all sectors of society. Developing the capability to forecast environmental conditions and disruptive events several weeks and months in advance could dramatically increase the value and benefit of environmental predictions, saving lives, protecting property, increasing economic vitality, protecting the environment, and informing policy choices. Over the past decade, the ability to forecast weather and climate conditions on subseasonal to seasonal (S2S) timescales, i.e., two to fifty-two weeks in advance, has improved substantially. Although significant progress has been made, much work remains to make S2S predictions skillful enough, as well as optimally tailored and communicated, to enable widespread use. Next Generation Earth System Predictions presents a ten-year U.S. research agenda that increases the nation's S2S research and modeling capability, advances S2S forecasting, and aids in decision making at medium and extended lead times.

Completing the Forecast

Completing the Forecast PDF Author: National Research Council
Publisher: National Academies Press
ISBN: 0309180538
Category : Science
Languages : en
Pages : 124

Book Description
Uncertainty is a fundamental characteristic of weather, seasonal climate, and hydrological prediction, and no forecast is complete without a description of its uncertainty. Effective communication of uncertainty helps people better understand the likelihood of a particular event and improves their ability to make decisions based on the forecast. Nonetheless, for decades, users of these forecasts have been conditioned to receive incomplete information about uncertainty. They have become used to single-valued (deterministic) forecasts (e.g., "the high temperature will be 70 degrees Farenheit 9 days from now") and applied their own experience in determining how much confidence to place in the forecast. Most forecast products from the public and private sectors, including those from the National Oceanographic and Atmospheric Administration's National Weather Service, continue this deterministic legacy. Fortunately, the National Weather Service and others in the prediction community have recognized the need to view uncertainty as a fundamental part of forecasts. By partnering with other segments of the community to understand user needs, generate relevant and rich informational products, and utilize effective communication vehicles, the National Weather Service can take a leading role in the transition to widespread, effective incorporation of uncertainty information into predictions. "Completing the Forecast" makes recommendations to the National Weather Service and the broader prediction community on how to make this transition.

Groundwater Recharge in a Desert Environment

Groundwater Recharge in a Desert Environment PDF Author: James F. Hogan
Publisher: American Geophysical Union
ISBN:
Category : Science
Languages : en
Pages : 310

Book Description
Published by the American Geophysical Union as part of the Water Science and Application Series, Volume 9. Groundwater recharge, the flux of water across the water table, is arguably the most difficult component of the hydrologic cycle to measure. In arid and semiarid regions the problem is exacerbated by extremely small recharge fluxes that are highly variable in space and time. --from the Preface Groundwater Recharge in a Desert Environment: The Southwestern United States speaks to these issues by presenting new interpretations and research after more than two decades of discipline-wide study. Discussions ondeveloping environmental tracers to fingerprint sources and amounts of groundwater at the basin scalethe critical role of vegetation in hydroecological processesnew geophysical methods in quantifying channel rechargeapplying Geographical Information System (GIS) models to land surface processescoupling process-based vadose zone to groundwater modeling, and more make this book a significant resource for hydmlogists, biogeoscientists, and geochemists concerned with water and water-related issues in arid and semiarid regions.