Erdos Space and Homeomorphism Groups of Manifolds PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Erdos Space and Homeomorphism Groups of Manifolds PDF full book. Access full book title Erdos Space and Homeomorphism Groups of Manifolds by Jan Jakobus Dijkstra. Download full books in PDF and EPUB format.

Erdos Space and Homeomorphism Groups of Manifolds

Erdos Space and Homeomorphism Groups of Manifolds PDF Author: Jan Jakobus Dijkstra
Publisher: American Mathematical Soc.
ISBN: 0821846353
Category : Mathematics
Languages : en
Pages : 76

Book Description
Let M be either a topological manifold, a Hilbert cube manifold, or a Menger manifold and let D be an arbitrary countable dense subset of M. Consider the topological group H(M,D) which consists of all autohomeomorphisms of M that map D onto itself equipped with the compact-open topology. We present a complete solution to the topological classification problem for H(M,D) as follows. If M is a one-dimensional topological manifold, then we proved in an earlier paper that H(M,D) is homeomorphic to Qω, the countable power of the space of rational numbers. In all other cases we find in this paper that H(M,D) is homeomorphic to the famed Erdős space E E, which consists of the vectors in Hilbert space l2 with rational coordinates. We obtain the second result by developing topological characterizations of Erdős space.

Erdos Space and Homeomorphism Groups of Manifolds

Erdos Space and Homeomorphism Groups of Manifolds PDF Author: Jan Jakobus Dijkstra
Publisher: American Mathematical Soc.
ISBN: 0821846353
Category : Mathematics
Languages : en
Pages : 76

Book Description
Let M be either a topological manifold, a Hilbert cube manifold, or a Menger manifold and let D be an arbitrary countable dense subset of M. Consider the topological group H(M,D) which consists of all autohomeomorphisms of M that map D onto itself equipped with the compact-open topology. We present a complete solution to the topological classification problem for H(M,D) as follows. If M is a one-dimensional topological manifold, then we proved in an earlier paper that H(M,D) is homeomorphic to Qω, the countable power of the space of rational numbers. In all other cases we find in this paper that H(M,D) is homeomorphic to the famed Erdős space E E, which consists of the vectors in Hilbert space l2 with rational coordinates. We obtain the second result by developing topological characterizations of Erdős space.

Parabolic Systems with Polynomial Growth and Regularity

Parabolic Systems with Polynomial Growth and Regularity PDF Author: Frank Duzaar
Publisher: American Mathematical Soc.
ISBN: 0821849670
Category : Mathematics
Languages : en
Pages : 135

Book Description
The authors establish a series of optimal regularity results for solutions to general non-linear parabolic systems $ u_t- \mathrm{div} \ a(x,t,u,Du)+H=0,$ under the main assumption of polynomial growth at rate $p$ i.e. $ a(x,t,u,Du) \leq L(1+ Du ^{p-1}), p \geq 2.$ They give a unified treatment of various interconnected aspects of the regularity theory: optimal partial regularity results for the spatial gradient of solutions, the first estimates on the (parabolic) Hausdorff dimension of the related singular set, and the first Calderon-Zygmund estimates for non-homogeneous problems are achieved here.

On First and Second Order Planar Elliptic Equations with Degeneracies

On First and Second Order Planar Elliptic Equations with Degeneracies PDF Author: Abdelhamid Meziani
Publisher: American Mathematical Soc.
ISBN: 0821853120
Category : Mathematics
Languages : en
Pages : 90

Book Description
This paper deals with elliptic equations in the plane with degeneracies. The equations are generated by a complex vector field that is elliptic everywhere except along a simple closed curve. Kernels for these equations are constructed. Properties of solutions, in a neighborhood of the degeneracy curve, are obtained through integral and series representations. An application to a second order elliptic equation with a punctual singularity is given.

The Hermitian Two Matrix Model with an Even Quartic Potential

The Hermitian Two Matrix Model with an Even Quartic Potential PDF Author: Maurice Duits
Publisher: American Mathematical Soc.
ISBN: 0821869280
Category : Mathematics
Languages : en
Pages : 118

Book Description
The authors consider the two matrix model with an even quartic potential $W(y)=y^4/4+\alpha y^2/2$ and an even polynomial potential $V(x)$. The main result of the paper is the formulation of a vector equilibrium problem for the limiting mean density for the eigenvalues of one of the matrices $M_1$. The vector equilibrium problem is defined for three measures, with external fields on the first and third measures and an upper constraint on the second measure. The proof is based on a steepest descent analysis of a $4\times4$ matrix valued Riemann-Hilbert problem that characterizes the correlation kernel for the eigenvalues of $M_1$. The authors' results generalize earlier results for the case $\alpha=0$, where the external field on the third measure was not present.

Networking Seifert Surgeries on Knots

Networking Seifert Surgeries on Knots PDF Author: Arnaud Deruelle
Publisher: American Mathematical Soc.
ISBN: 0821853333
Category : Mathematics
Languages : en
Pages : 145

Book Description
The authors propose a new approach in studying Dehn surgeries on knots in the $3$-sphere $S^3$ yielding Seifert fiber spaces. The basic idea is finding relationships among such surgeries. To describe relationships and get a global picture of Seifert surgeries, they introduce ``seiferters'' and the Seifert Surgery Network, a $1$-dimensional complex whose vertices correspond to Seifert surgeries. A seiferter for a Seifert surgery on a knot $K$ is a trivial knot in $S^3$ disjoint from $K$ that becomes a fiber in the resulting Seifert fiber space. Twisting $K$ along its seiferter or an annulus cobounded by a pair of its seiferters yields another knot admitting a Seifert surgery. Edges of the network correspond to such twistings. A path in the network from one Seifert surgery to another explains how the former Seifert surgery is obtained from the latter after a sequence of twistings along seiferters and/or annuli cobounded by pairs of seiferters. The authors find explicit paths from various known Seifert surgeries to those on torus knots, the most basic Seifert surgeries. The authors classify seiferters and obtain some fundamental results on the structure of the Seifert Surgery Network. From the networking viewpoint, they find an infinite family of Seifert surgeries on hyperbolic knots which cannot be embedded in a genus two Heegaard surface of $S^3$.

A Theory of Generalized Donaldson-Thomas Invariants

A Theory of Generalized Donaldson-Thomas Invariants PDF Author: Dominic D. Joyce
Publisher: American Mathematical Soc.
ISBN: 0821852795
Category : Mathematics
Languages : en
Pages : 212

Book Description
This book studies generalized Donaldson-Thomas invariants $\bar{DT}{}^\alpha(\tau)$. They are rational numbers which `count' both $\tau$-stable and $\tau$-semistable coherent sheaves with Chern character $\alpha$ on $X$; strictly $\tau$-semistable sheaves must be counted with complicated rational weights. The $\bar{DT}{}^\alpha(\tau)$ are defined for all classes $\alpha$, and are equal to $DT^\alpha(\tau)$ when it is defined. They are unchanged under deformations of $X$, and transform by a wall-crossing formula under change of stability condition $\tau$. To prove all this, the authors study the local structure of the moduli stack $\mathfrak M$ of coherent sheaves on $X$. They show that an atlas for $\mathfrak M$ may be written locally as $\mathrm{Crit}(f)$ for $f:U\to{\mathbb C}$ holomorphic and $U$ smooth, and use this to deduce identities on the Behrend function $\nu_\mathfrak M$. They compute the invariants $\bar{DT}{}^\alpha(\tau)$ in examples, and make a conjecture about their integrality properties. They also extend the theory to abelian categories $\mathrm{mod}$-$\mathbb{C}Q\backslash I$ of representations of a quiver $Q$ with relations $I$ coming from a superpotential $W$ on $Q$.

Towards Non-Abelian P-adic Hodge Theory in the Good Reduction Case

Towards Non-Abelian P-adic Hodge Theory in the Good Reduction Case PDF Author: Martin C. Olsson
Publisher: American Mathematical Soc.
ISBN: 082185240X
Category : Mathematics
Languages : en
Pages : 170

Book Description
The author develops a non-abelian version of $p$-adic Hodge Theory for varieties (possibly open with ``nice compactification'') with good reduction. This theory yields in particular a comparison between smooth $p$-adic sheaves and $F$-isocrystals on the level of certain Tannakian categories, $p$-adic Hodge theory for relative Malcev completions of fundamental groups and their Lie algebras, and gives information about the action of Galois on fundamental groups.

Positive Definiteness of Functions with Applications to Operator Norm Inequalities

Positive Definiteness of Functions with Applications to Operator Norm Inequalities PDF Author: Hideki Kosaki
Publisher: American Mathematical Soc.
ISBN: 0821853074
Category : Mathematics
Languages : en
Pages : 93

Book Description
Positive definiteness is determined for a wide class of functions relevant in the study of operator means and their norm comparisons. Then, this information is used to obtain an abundance of new sharp (unitarily) norm inequalities comparing various operator means and sometimes other related operators.

On the Shape of a Pure $O$-Sequence

On the Shape of a Pure $O$-Sequence PDF Author: Mats Boij
Publisher: American Mathematical Soc.
ISBN: 0821869108
Category : Mathematics
Languages : en
Pages : 93

Book Description
A monomial order ideal is a finite collection X of (monic) monomials such that, whenever M∈X and N divides M, then N∈X. Hence X is a poset, where the partial order is given by divisibility. If all, say t t, maximal monomials of X have the same degree, then X is pure (of type t). A pure O-sequence is the vector, h_=(h0=1,h1,...,he), counting the monomials of X in each degree. Equivalently, pure O-sequences can be characterized as the f-vectors of pure multicomplexes, or, in the language of commutative algebra, as the h h-vectors of monomial Artinian level algebras. Pure O-sequences had their origin in one of the early works of Stanley's in this area, and have since played a significant role in at least three different disciplines: the study of simplicial complexes and their f f-vectors, the theory of level algebras, and the theory of matroids. This monograph is intended to be the first systematic study of the theory of pure O-sequences.

$n$-Harmonic Mappings between Annuli

$n$-Harmonic Mappings between Annuli PDF Author: Tadeusz Iwaniec
Publisher: American Mathematical Soc.
ISBN: 0821853570
Category : Mathematics
Languages : en
Pages : 120

Book Description
Iwaniec and Onninen (both mathematics, Syracuse U., US) address concrete questions regarding energy minimal deformations of annuli in Rn. One novelty of their approach is that they allow the mappings to slip freely along the boundaries of the domains, where it is most difficult to establish the existence, uniqueness, and invertibility properties of the extremal mappings. At the core of the matter, they say, is the underlying concept of free Lagrangians. After an introduction, they cover in turn principal radial n-harmonics, and the n-harmonic energy. There is no index. Annotation ©2012 Book News, Inc., Portland, OR (booknews.com).