Author: M. A. Mandell
Publisher: American Mathematical Soc.
ISBN: 082182936X
Category : Mathematics
Languages : en
Pages : 125
Book Description
The last few years have seen a revolution in our understanding of the foundations of stable homotopy theory. Many symmetric monoidal model categories of spectra whose homotopy categories are equivalent to the stable homotopy category are now known, whereas no such categories were known before 1993. The most well-known examples are the category of $S$-modules and the category of symmetric spectra. We focus on the category of orthogonal spectra, which enjoys some of the best features of $S$-modules and symmetric spectra and which is particularly well-suited to equivariant generalization. We first complete the nonequivariant theory by comparing orthogonal spectra to $S$-modules. We then develop the equivariant theory.For a compact Lie group $G$, we construct a symmetric monoidal model category of orthogonal $G$-spectra whose homotopy category is equivalent to the classical stable homotopy category of $G$-spectra. We also complete the theory of $S_G$-modules and compare the categories of orthogonal $G$-spectra and $S_G$-modules. A key feature is the analysis of change of universe, change of group, fixed point, and orbit functors in these two highly structured categories for the study of equivariant stable homotopy theory.
Equivariant Orthogonal Spectra and $S$-Modules
Author: M. A. Mandell
Publisher: American Mathematical Soc.
ISBN: 082182936X
Category : Mathematics
Languages : en
Pages : 125
Book Description
The last few years have seen a revolution in our understanding of the foundations of stable homotopy theory. Many symmetric monoidal model categories of spectra whose homotopy categories are equivalent to the stable homotopy category are now known, whereas no such categories were known before 1993. The most well-known examples are the category of $S$-modules and the category of symmetric spectra. We focus on the category of orthogonal spectra, which enjoys some of the best features of $S$-modules and symmetric spectra and which is particularly well-suited to equivariant generalization. We first complete the nonequivariant theory by comparing orthogonal spectra to $S$-modules. We then develop the equivariant theory.For a compact Lie group $G$, we construct a symmetric monoidal model category of orthogonal $G$-spectra whose homotopy category is equivalent to the classical stable homotopy category of $G$-spectra. We also complete the theory of $S_G$-modules and compare the categories of orthogonal $G$-spectra and $S_G$-modules. A key feature is the analysis of change of universe, change of group, fixed point, and orbit functors in these two highly structured categories for the study of equivariant stable homotopy theory.
Publisher: American Mathematical Soc.
ISBN: 082182936X
Category : Mathematics
Languages : en
Pages : 125
Book Description
The last few years have seen a revolution in our understanding of the foundations of stable homotopy theory. Many symmetric monoidal model categories of spectra whose homotopy categories are equivalent to the stable homotopy category are now known, whereas no such categories were known before 1993. The most well-known examples are the category of $S$-modules and the category of symmetric spectra. We focus on the category of orthogonal spectra, which enjoys some of the best features of $S$-modules and symmetric spectra and which is particularly well-suited to equivariant generalization. We first complete the nonequivariant theory by comparing orthogonal spectra to $S$-modules. We then develop the equivariant theory.For a compact Lie group $G$, we construct a symmetric monoidal model category of orthogonal $G$-spectra whose homotopy category is equivalent to the classical stable homotopy category of $G$-spectra. We also complete the theory of $S_G$-modules and compare the categories of orthogonal $G$-spectra and $S_G$-modules. A key feature is the analysis of change of universe, change of group, fixed point, and orbit functors in these two highly structured categories for the study of equivariant stable homotopy theory.
Equivariant Orthogonal Spectra and S-Modules
Author: M. A. Mandell
Publisher:
ISBN: 9781470403485
Category : Categories
Languages : en
Pages : 108
Book Description
The previous years have seen a revolution in our understanding of the foundations of stable homotopy theory. Many symmetric monoidal model categories of spectra whose homotopy categories are equivalent to the stable homotopy category are now known, whereas no such categories were known before 1993.
Publisher:
ISBN: 9781470403485
Category : Categories
Languages : en
Pages : 108
Book Description
The previous years have seen a revolution in our understanding of the foundations of stable homotopy theory. Many symmetric monoidal model categories of spectra whose homotopy categories are equivalent to the stable homotopy category are now known, whereas no such categories were known before 1993.
Equivariant Stable Homotopy Theory and the Kervaire Invariant Problem
Author: Michael A. Hill
Publisher: Cambridge University Press
ISBN: 1108831443
Category : Mathematics
Languages : en
Pages : 881
Book Description
A complete and definitive account of the authors' resolution of the Kervaire invariant problem in stable homotopy theory.
Publisher: Cambridge University Press
ISBN: 1108831443
Category : Mathematics
Languages : en
Pages : 881
Book Description
A complete and definitive account of the authors' resolution of the Kervaire invariant problem in stable homotopy theory.
Global Homotopy Theory
Author: Stefan Schwede
Publisher: Cambridge University Press
ISBN: 110842581X
Category : Mathematics
Languages : en
Pages : 847
Book Description
A comprehensive, self-contained approach to global equivariant homotopy theory, with many detailed examples and sample calculations.
Publisher: Cambridge University Press
ISBN: 110842581X
Category : Mathematics
Languages : en
Pages : 847
Book Description
A comprehensive, self-contained approach to global equivariant homotopy theory, with many detailed examples and sample calculations.
Equivariant Stable Homotopy Theory
Author: L. Gaunce Jr. Lewis
Publisher: Springer
ISBN: 3540470778
Category : Mathematics
Languages : en
Pages : 548
Book Description
This book is a foundational piece of work in stable homotopy theory and in the theory of transformation groups. It may be roughly divided into two parts. The first part deals with foundations of (equivariant) stable homotopy theory. A workable category of CW-spectra is developed. The foundations are such that an action of a compact Lie group is considered throughout, and spectra allow desuspension by arbitrary representations. But even if the reader forgets about group actions, he will find many details of the theory worked out for the first time. More subtle constructions like smash products, function spectra, change of group isomorphisms, fixed point and orbit spectra are treated. While it is impossible to survey properly the material which is covered in the book, it does boast these general features: (i) a thorough and reliable presentation of the foundations of the theory; (ii) a large number of basic results, principal applications, and fundamental techniques presented for the first time in a coherent theory, unifying numerous treatments of special cases in the literature.
Publisher: Springer
ISBN: 3540470778
Category : Mathematics
Languages : en
Pages : 548
Book Description
This book is a foundational piece of work in stable homotopy theory and in the theory of transformation groups. It may be roughly divided into two parts. The first part deals with foundations of (equivariant) stable homotopy theory. A workable category of CW-spectra is developed. The foundations are such that an action of a compact Lie group is considered throughout, and spectra allow desuspension by arbitrary representations. But even if the reader forgets about group actions, he will find many details of the theory worked out for the first time. More subtle constructions like smash products, function spectra, change of group isomorphisms, fixed point and orbit spectra are treated. While it is impossible to survey properly the material which is covered in the book, it does boast these general features: (i) a thorough and reliable presentation of the foundations of the theory; (ii) a large number of basic results, principal applications, and fundamental techniques presented for the first time in a coherent theory, unifying numerous treatments of special cases in the literature.
Structured Ring Spectra
Author: Andrew Baker
Publisher: Cambridge University Press
ISBN: 9780521603058
Category : Mathematics
Languages : en
Pages : 246
Book Description
This book contains some important new contributions to the theory of structured ring spectra.
Publisher: Cambridge University Press
ISBN: 9780521603058
Category : Mathematics
Languages : en
Pages : 246
Book Description
This book contains some important new contributions to the theory of structured ring spectra.
Algebraic Topology: Applications and New Directions
Author: Ulrike Tillmann
Publisher: American Mathematical Soc.
ISBN: 0821894749
Category : Mathematics
Languages : en
Pages : 350
Book Description
This volume contains the proceedings of the Stanford Symposium on Algebraic Topology: Applications and New Directions, held from July 23-27, 2012, at Stanford University, Stanford, California. The symposium was held in honor of Gunnar Carlsson, Ralph Cohen and Ib Madsen, who celebrated their 60th and 70th birthdays that year. It showcased current research in Algebraic Topology reflecting the celebrants' broad interests and profound influence on the subject. The topics varied broadly from stable equivariant homotopy theory to persistent homology and application in data analysis, covering topological aspects of quantum physics such as string topology and geometric quantization, examining homology stability in algebraic and geometric contexts, including algebraic -theory and the theory of operads.
Publisher: American Mathematical Soc.
ISBN: 0821894749
Category : Mathematics
Languages : en
Pages : 350
Book Description
This volume contains the proceedings of the Stanford Symposium on Algebraic Topology: Applications and New Directions, held from July 23-27, 2012, at Stanford University, Stanford, California. The symposium was held in honor of Gunnar Carlsson, Ralph Cohen and Ib Madsen, who celebrated their 60th and 70th birthdays that year. It showcased current research in Algebraic Topology reflecting the celebrants' broad interests and profound influence on the subject. The topics varied broadly from stable equivariant homotopy theory to persistent homology and application in data analysis, covering topological aspects of quantum physics such as string topology and geometric quantization, examining homology stability in algebraic and geometric contexts, including algebraic -theory and the theory of operads.
Topological Modular Forms
Author: Christopher L. Douglas
Publisher: American Mathematical Soc.
ISBN: 1470418843
Category : Mathematics
Languages : en
Pages : 353
Book Description
The theory of topological modular forms is an intricate blend of classical algebraic modular forms and stable homotopy groups of spheres. The construction of this theory combines an algebro-geometric perspective on elliptic curves over finite fields with techniques from algebraic topology, particularly stable homotopy theory. It has applications to and connections with manifold topology, number theory, and string theory. This book provides a careful, accessible introduction to topological modular forms. After a brief history and an extended overview of the subject, the book proper commences with an exposition of classical aspects of elliptic cohomology, including background material on elliptic curves and modular forms, a description of the moduli stack of elliptic curves, an explanation of the exact functor theorem for constructing cohomology theories, and an exploration of sheaves in stable homotopy theory. There follows a treatment of more specialized topics, including localization of spectra, the deformation theory of formal groups, and Goerss-Hopkins obstruction theory for multiplicative structures on spectra. The book then proceeds to more advanced material, including discussions of the string orientation, the sheaf of spectra on the moduli stack of elliptic curves, the homotopy of topological modular forms, and an extensive account of the construction of the spectrum of topological modular forms. The book concludes with the three original, pioneering and enormously influential manuscripts on the subject, by Hopkins, Miller, and Mahowald.
Publisher: American Mathematical Soc.
ISBN: 1470418843
Category : Mathematics
Languages : en
Pages : 353
Book Description
The theory of topological modular forms is an intricate blend of classical algebraic modular forms and stable homotopy groups of spheres. The construction of this theory combines an algebro-geometric perspective on elliptic curves over finite fields with techniques from algebraic topology, particularly stable homotopy theory. It has applications to and connections with manifold topology, number theory, and string theory. This book provides a careful, accessible introduction to topological modular forms. After a brief history and an extended overview of the subject, the book proper commences with an exposition of classical aspects of elliptic cohomology, including background material on elliptic curves and modular forms, a description of the moduli stack of elliptic curves, an explanation of the exact functor theorem for constructing cohomology theories, and an exploration of sheaves in stable homotopy theory. There follows a treatment of more specialized topics, including localization of spectra, the deformation theory of formal groups, and Goerss-Hopkins obstruction theory for multiplicative structures on spectra. The book then proceeds to more advanced material, including discussions of the string orientation, the sheaf of spectra on the moduli stack of elliptic curves, the homotopy of topological modular forms, and an extensive account of the construction of the spectrum of topological modular forms. The book concludes with the three original, pioneering and enormously influential manuscripts on the subject, by Hopkins, Miller, and Mahowald.
Handbook of K-Theory
Author: Eric Friedlander
Publisher: Springer Science & Business Media
ISBN: 354023019X
Category : Mathematics
Languages : en
Pages : 1148
Book Description
This handbook offers a compilation of techniques and results in K-theory. Each chapter is dedicated to a specific topic and is written by a leading expert. Many chapters present historical background; some present previously unpublished results, whereas some present the first expository account of a topic; many discuss future directions as well as open problems. It offers an exposition of our current state of knowledge as well as an implicit blueprint for future research.
Publisher: Springer Science & Business Media
ISBN: 354023019X
Category : Mathematics
Languages : en
Pages : 1148
Book Description
This handbook offers a compilation of techniques and results in K-theory. Each chapter is dedicated to a specific topic and is written by a leading expert. Many chapters present historical background; some present previously unpublished results, whereas some present the first expository account of a topic; many discuss future directions as well as open problems. It offers an exposition of our current state of knowledge as well as an implicit blueprint for future research.
Multicurves and Equivariant Cohomology
Author: Neil P. Strickland
Publisher: American Mathematical Soc.
ISBN: 0821849018
Category : Mathematics
Languages : en
Pages : 130
Book Description
Let $A$ be a finite abelian group. The author sets up an algebraic framework for studying $A$-equivariant complex-orientable cohomology theories in terms of a suitable kind of equivariant formal group. He computes the equivariant cohomology of many spaces in these terms, including projective bundles (and associated Gysin maps), Thom spaces, and infinite Grassmannians.
Publisher: American Mathematical Soc.
ISBN: 0821849018
Category : Mathematics
Languages : en
Pages : 130
Book Description
Let $A$ be a finite abelian group. The author sets up an algebraic framework for studying $A$-equivariant complex-orientable cohomology theories in terms of a suitable kind of equivariant formal group. He computes the equivariant cohomology of many spaces in these terms, including projective bundles (and associated Gysin maps), Thom spaces, and infinite Grassmannians.