Equivalent Seismic Design of Curved Box Girder Bridges PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Equivalent Seismic Design of Curved Box Girder Bridges PDF full book. Access full book title Equivalent Seismic Design of Curved Box Girder Bridges by I-Cheng Lin. Download full books in PDF and EPUB format.

Equivalent Seismic Design of Curved Box Girder Bridges

Equivalent Seismic Design of Curved Box Girder Bridges PDF Author: I-Cheng Lin
Publisher:
ISBN:
Category :
Languages : en
Pages : 334

Book Description


Equivalent Seismic Design of Curved Box Girder Bridges

Equivalent Seismic Design of Curved Box Girder Bridges PDF Author: I-Cheng Lin
Publisher:
ISBN:
Category :
Languages : en
Pages : 334

Book Description


Equivalent Seismic Design of Curved Design of Curved Box Girder Bridges

Equivalent Seismic Design of Curved Design of Curved Box Girder Bridges PDF Author:
Publisher:
ISBN:
Category : Box girder bridges
Languages : en
Pages : 167

Book Description


Seismic Analysis and Design of Curved Steel Box-girder Bridges

Seismic Analysis and Design of Curved Steel Box-girder Bridges PDF Author: Mohamed Nabeel Abdel-Salam
Publisher:
ISBN:
Category : Box girder bridges
Languages : en
Pages : 770

Book Description


Analysis and Design of Bridges

Analysis and Design of Bridges PDF Author: C. Yilmaz
Publisher: Springer Science & Business Media
ISBN: 9400961227
Category : Technology & Engineering
Languages : en
Pages : 447

Book Description
The Proceedings of the NATO Advanced Study Institute on Analysis and Design of Bridges held at ~e§me, lzmir, Turkey from 28 June 1982 to 9 July 1982 are contained in the present volume. The Advanced Study Institute was attended by 37 lecturers and participants from 10 different countries. The Organizing Committee consisted of Professors P. Gtilkan, A. C. Scordelis, S. T. Wasti and 9. Yl. lmaz. The guidelines set by NATO for the Advanced Study Institute require it to serve not only as an efficient forum for the dissemination of available advanced knowledge to a selected group of qualified people but also as a platform for the exploration of future research possibilities in the scientific or engineering areas concerned. The main topics covered by the present Advanced Study Institute were the mathematical modelling of bridges for better analysis and the scientific assessment of bridge behaviour for the introduction of improved design procedures. It has been our observation that as a result of the range and depth of the lectures presented and the many informal discussions that took place, ideas became fissile, the stimulus never flagged and many gaps in the engineering knowledge of the participants were "bridged". Here we particularly wish to mention that valuable informal presenta tions of research work were made during the course of the Institute by Drs. Friedrich, Karaesmen, Lamas and Parker.

The Shock and Vibration Digest

The Shock and Vibration Digest PDF Author:
Publisher:
ISBN:
Category : Shock (Mechanics)
Languages : en
Pages : 594

Book Description


Seismic Design and Assessment of Bridges

Seismic Design and Assessment of Bridges PDF Author: Andreas J Kappos
Publisher: Springer Science & Business Media
ISBN: 9400739435
Category : Technology & Engineering
Languages : en
Pages : 233

Book Description
The book focuses on the use of inelastic analysis methods for the seismic assessment and design of bridges, for which the work carried out so far, albeit interesting and useful, is nevertheless clearly less than that for buildings. Although some valuable literature on the subject is currently available, the most advanced inelastic analysis methods that emerged during the last decade are currently found only in the specialised research-oriented literature, such as technical journals and conference proceedings. Hence the key objective of this book is two-fold, first to present all important methods belonging to the aforementioned category in a uniform and sufficient for their understanding and implementation length, and to provide also a critical perspective on them by including selected case-studies wherein more than one methods are applied to a specific bridge and by offering some critical comments on the limitations of the individual methods and on their relative efficiency. The book should be a valuable tool for both researchers and practicing engineers dealing with seismic design and assessment of bridges, by both making the methods and the analytical tools available for their implementation, and by assisting them to select the method that best suits the individual bridge projects that each engineer and/or researcher faces.

Seismic Response and Analytical Fragility Functions for Curved Concrete Box-girder Bridges

Seismic Response and Analytical Fragility Functions for Curved Concrete Box-girder Bridges PDF Author: Reihaneh Sarraf Shirazi
Publisher:
ISBN:
Category : Electronic books
Languages : en
Pages : 642

Book Description
Curved bridges are constructed to conform to geometric constraints resulting from traffic and structural restrictions. They are different from their straight counterparts since the response coupling in the longitudinal and transverse directions and rotation of the superstructure may lead to significantly different seismic response. Observations from past earthquakes highlighted the seismic vulnerability of these bridges due to this coupled response. The consequence of bridge damage on the performance of transportation system is commonly assessed through Seismic Risk Assessment (SRA) of lifeline systems. Thus, seismic fragility curves are essential input to SRA to estimate damage to highway bridges and consequently to the network. The literature review shows shortcomings in fragility studies on the effect of horizontal curvature of bridges, specifically concrete box-girder bridges. This study aims to fill in the gap on the current state-of-the-knowledge in the seismic response and vulnerability of curved concrete box-girder bridges. Since this bridge type is common in California, the modern details adopted by CALTRANS along with the current seismic design considerations from SDC (2013) are used to select the representative benchmark bridges. To incorporate the uncertainty in geometrical, structural, and material properties of bridges into the analytical models, five sets of statistical bridge samples (each includes 160 bridges) with various subtended angles are developed. These bridge models are subjected to four sets of ground motions representing different site soil conditions and spectral characteristics. A total of 800 response history analyses are performed and the results are used to develop analytical component and system fragility functions for a range of subtended angles. A comprehensive study on the effect of horizontal curvature on the bridge dynamic characteristics and component seismic response is conducted. The median of system (bridge) fragility curves are proposed as a function of the subtended angle for each ground motion set. These functions can be used as input into SRA tools. The fragility analysis shows that the seismic vulnerability of bridges depends on the soil condition of the site and ground motion characteristics as well as the horizontal curvature of the bridge. Columns are found to have the most significant contribution to the system fragility curves. The analyses confirm that the current seismic details including PTFE/spherical bearings and isolated shear keys, suggested by CALTRANS, achieve the objectives of capacity-protected design of piles. Since the dynamic characteristics of bridges are sensitive to the curvature, curved bridges with subtended angles greater than 30 degrees require explicit modeling of curved geometry. In curved bridges, the coupling of transverse and longitudinal modes reduces the dominance of the fundamental mode in the bridge response and leads to the contribution of higher modes. The statistical evaluation of structural demands indicates that the curvature and the torsion demands on columns are amplified in curved bridges.

Development of Design Specifications and Commentary for Horizontally Curved Concrete Box-girder Bridges

Development of Design Specifications and Commentary for Horizontally Curved Concrete Box-girder Bridges PDF Author: Nutt, Redfield, and Valentine
Publisher: Transportation Research Board
ISBN: 030911750X
Category : Box girder bridges
Languages : en
Pages : 97

Book Description
This report provides specifications, commentary, and examples for the design of horizontally curved concrete box-girder highway bridges. The report details the development of the design procedures. Recommended Load and Resistance Factor Design (LRFD) specifications and design examples illustrating the application of the design methods and specifications are included in appendixes (available on the TRB website at http://trb.org/news/blurb_detail.asp?id=9596).

Seismic Design and Retrofit of Bridges

Seismic Design and Retrofit of Bridges PDF Author: M. J. N. Priestley
Publisher: John Wiley & Sons
ISBN: 9780471579984
Category : Technology & Engineering
Languages : en
Pages : 704

Book Description
Because of their structural simplicity, bridges tend to beparticularly vulnerable to damage and even collapse when subjectedto earthquakes or other forms of seismic activity. Recentearthquakes, such as the ones in Kobe, Japan, and Oakland,California, have led to a heightened awareness of seismic risk andhave revolutionized bridge design and retrofit philosophies. In Seismic Design and Retrofit of Bridges, three of the world's topauthorities on the subject have collaborated to produce the mostexhaustive reference on seismic bridge design currently available.Following a detailed examination of the seismic effects of actualearthquakes on local area bridges, the authors demonstrate designstrategies that will make these and similar structures optimallyresistant to the damaging effects of future seismicdisturbances. Relying heavily on worldwide research associated with recentquakes, Seismic Design and Retrofit of Bridges begins with anin-depth treatment of seismic design philosophy as it applies tobridges. The authors then describe the various geotechnicalconsiderations specific to bridge design, such as soil-structureinteraction and traveling wave effects. Subsequent chapters coverconceptual and actual design of various bridge superstructures, andmodeling and analysis of these structures. As the basis for their design strategies, the authors' focus is onthe widely accepted capacity design approach, in which particularlyvulnerable locations of potentially inelastic flexural deformationare identified and strengthened to accommodate a greater degree ofstress. The text illustrates how accurate application of thecapacity design philosophy to the design of new bridges results instructures that can be expected to survive most earthquakes withonly minor, repairable damage. Because the majority of today's bridges were built before thecapacity design approach was understood, the authors also devoteseveral chapters to the seismic assessment of existing bridges,with the aim of designing and implementing retrofit measures toprotect them against the damaging effects of future earthquakes.These retrofitting techniques, though not considered appropriate inthe design of new bridges, are given considerable emphasis, sincethey currently offer the best solution for the preservation ofthese vital and often historically valued thoroughfares. Practical and applications-oriented, Seismic Design and Retrofit ofBridges is enhanced with over 300 photos and line drawings toillustrate key concepts and detailed design procedures. As the onlytext currently available on the vital topic of seismic bridgedesign, it provides an indispensable reference for civil,structural, and geotechnical engineers, as well as students inrelated engineering courses. A state-of-the-art text on earthquake-proof design and retrofit ofbridges Seismic Design and Retrofit of Bridges fills the urgent need for acomprehensive and up-to-date text on seismic-ally resistant bridgedesign. The authors, all recognized leaders in the field,systematically cover all aspects of bridge design related toseismic resistance for both new and existing bridges. * A complete overview of current design philosophy for bridges,with related seismic and geotechnical considerations * Coverage of conceptual design constraints and their relationshipto current design alternatives * Modeling and analysis of bridge structures * An exhaustive look at common building materials and theirresponse to seismic activity * A hands-on approach to the capacity design process * Use of isolation and dissipation devices in bridge design * Important coverage of seismic assessment and retrofit design ofexisting bridges

Analysis and Design of Curved Box Girder Bridges

Analysis and Design of Curved Box Girder Bridges PDF Author: Christian Meyer
Publisher:
ISBN:
Category : Box girder bridges
Languages : en
Pages : 175

Book Description