Epigenetic Approaches in Drug Discovery, Development and Treatment PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Epigenetic Approaches in Drug Discovery, Development and Treatment PDF full book. Access full book title Epigenetic Approaches in Drug Discovery, Development and Treatment by Shibashish Giri. Download full books in PDF and EPUB format.

Epigenetic Approaches in Drug Discovery, Development and Treatment

Epigenetic Approaches in Drug Discovery, Development and Treatment PDF Author: Shibashish Giri
Publisher: Frontiers Media SA
ISBN: 2889639320
Category :
Languages : en
Pages : 130

Book Description
Establishment of a normal phenotype involves dynamic epigenetic regulation of gene expression that when affected contributes to human diseases. On a molecular level, epigenetic regulation is marked by specific covalent modifications (acetylation, methylation, phosphorylation, sumoylation, PARylation and ubiquitylation) of DNA and its associated histones. Studies also suggest the influence of such epigenetic modifications on non-coding RNA expression implicated in normal and diseased phenotypes. Epigenetic control of genetic expression is a reversible process essential for normal development and function of an organism. Alteration of epigenetic regulation leads to various disease forms such as cancer, diabetes, inflammation and neuropsychiatric disorders. Assessing these alterations provides a deeper insight into the changes induced in the genome, which is often informative for identifying disease subtypes or developing suitable treatments. Therefore, epigenetics proves to be a key area of clinical investigation in diagnosis, prognosis, and treatment of complex diseases. Genetic mutations, environmental stress, pathogens and drugs of abuse are some of the predominant factors that induce and impact changes on chromatin, which directly dictate a diseased phenotype. It is essential to consider the interaction between genetic and epigenetic factors to understand the molecular mechanisms of complex human diseases for safer and efficient drug development. Furthermore, genetic variation in absorption, distribution, metabolism, and excretion (ADME) genes is insufficient to account for interindividual variability of drug response. Therefore, current efforts aim to identify epigenetic components of ADME gene regulation, which include phase-I and phase-II enzymes, uptake transporters, efflux transporters and nuclear receptors involved in regulation of ADME genes. Monitoring circulatory epigenetic biomarkers in liquid biopsies (blood, saliva, urine, cerebrospinal fluid) of disease-associated and drug-associated epigenetic alterations may prove useful for decision support for routine clinical treatment and drug discovery. Hence, recent drug discovery efforts on targeting the epigenome, has emerged an area of interest with several new drugs being developed, tested and some already approved by the US Food and Drug Administration (FDA). These new insights into the complexities of epigenetic regulation are key contributors to our basic understanding of this process in human health and disease, which will provide scope for innovative drug therapies. It is of urgency to aid the present understanding of epigenomics driven diseased outcomes, with the expectation that further studies will identify early markers of disease and targets for therapeutics.