Author: Nicholas P. Jewell
Publisher: CRC Press
ISBN: 0203496868
Category : Medical
Languages : en
Pages : 376
Book Description
Statistical ideas have been integral to the development of epidemiology and continue to provide the tools needed to interpret epidemiological studies. Although epidemiologists do not need a highly mathematical background in statistical theory to conduct and interpret such studies, they do need more than an encyclopedia of "recipes." Statistics for Epidemiology achieves just the right balance between the two approaches, building an intuitive understanding of the methods most important to practitioners and the skills to use them effectively. It develops the techniques for analyzing simple risk factors and disease data, with step-by-step extensions that include the use of binary regression. It covers the logistic regression model in detail and contrasts it with the Cox model for time-to-incidence data. The author uses a few simple case studies to guide readers from elementary analyses to more complex regression modeling. Following these examples through several chapters makes it easy to compare the interpretations that emerge from varying approaches. Written by one of the top biostatisticians in the field, Statistics for Epidemiology stands apart in its focus on interpretation and in the depth of understanding it provides. It lays the groundwork that all public health professionals, epidemiologists, and biostatisticians need to successfully design, conduct, and analyze epidemiological studies.
Statistics for Epidemiology
Author: Nicholas P. Jewell
Publisher: CRC Press
ISBN: 0203496868
Category : Medical
Languages : en
Pages : 376
Book Description
Statistical ideas have been integral to the development of epidemiology and continue to provide the tools needed to interpret epidemiological studies. Although epidemiologists do not need a highly mathematical background in statistical theory to conduct and interpret such studies, they do need more than an encyclopedia of "recipes." Statistics for Epidemiology achieves just the right balance between the two approaches, building an intuitive understanding of the methods most important to practitioners and the skills to use them effectively. It develops the techniques for analyzing simple risk factors and disease data, with step-by-step extensions that include the use of binary regression. It covers the logistic regression model in detail and contrasts it with the Cox model for time-to-incidence data. The author uses a few simple case studies to guide readers from elementary analyses to more complex regression modeling. Following these examples through several chapters makes it easy to compare the interpretations that emerge from varying approaches. Written by one of the top biostatisticians in the field, Statistics for Epidemiology stands apart in its focus on interpretation and in the depth of understanding it provides. It lays the groundwork that all public health professionals, epidemiologists, and biostatisticians need to successfully design, conduct, and analyze epidemiological studies.
Publisher: CRC Press
ISBN: 0203496868
Category : Medical
Languages : en
Pages : 376
Book Description
Statistical ideas have been integral to the development of epidemiology and continue to provide the tools needed to interpret epidemiological studies. Although epidemiologists do not need a highly mathematical background in statistical theory to conduct and interpret such studies, they do need more than an encyclopedia of "recipes." Statistics for Epidemiology achieves just the right balance between the two approaches, building an intuitive understanding of the methods most important to practitioners and the skills to use them effectively. It develops the techniques for analyzing simple risk factors and disease data, with step-by-step extensions that include the use of binary regression. It covers the logistic regression model in detail and contrasts it with the Cox model for time-to-incidence data. The author uses a few simple case studies to guide readers from elementary analyses to more complex regression modeling. Following these examples through several chapters makes it easy to compare the interpretations that emerge from varying approaches. Written by one of the top biostatisticians in the field, Statistics for Epidemiology stands apart in its focus on interpretation and in the depth of understanding it provides. It lays the groundwork that all public health professionals, epidemiologists, and biostatisticians need to successfully design, conduct, and analyze epidemiological studies.
Statistical Methods for Global Health and Epidemiology
Author: Xinguang Chen
Publisher: Springer Nature
ISBN: 3030352609
Category : Medical
Languages : en
Pages : 420
Book Description
This book examines statistical methods and models used in the fields of global health and epidemiology. It includes methods such as innovative probability sampling, data harmonization and encryption, and advanced descriptive, analytical and monitory methods. Program codes using R are included as well as real data examples. Contemporary global health and epidemiology involves a myriad of medical and health challenges, including inequality of treatment, the HIV/AIDS epidemic and its subsequent control, the flu, cancer, tobacco control, drug use, and environmental pollution. In addition to its vast scales and telescopic perspective; addressing global health concerns often involves examining resource-limited populations with large geographic, socioeconomic diversities. Therefore, advancing global health requires new epidemiological design, new data, and new methods for sampling, data processing, and statistical analysis. This book provides global health researchers with methods that will enable access to and utilization of existing data. Featuring contributions from both epidemiological and biostatistical scholars, this book is a practical resource for researchers, practitioners, and students in solving global health problems in research, education, training, and consultation.
Publisher: Springer Nature
ISBN: 3030352609
Category : Medical
Languages : en
Pages : 420
Book Description
This book examines statistical methods and models used in the fields of global health and epidemiology. It includes methods such as innovative probability sampling, data harmonization and encryption, and advanced descriptive, analytical and monitory methods. Program codes using R are included as well as real data examples. Contemporary global health and epidemiology involves a myriad of medical and health challenges, including inequality of treatment, the HIV/AIDS epidemic and its subsequent control, the flu, cancer, tobacco control, drug use, and environmental pollution. In addition to its vast scales and telescopic perspective; addressing global health concerns often involves examining resource-limited populations with large geographic, socioeconomic diversities. Therefore, advancing global health requires new epidemiological design, new data, and new methods for sampling, data processing, and statistical analysis. This book provides global health researchers with methods that will enable access to and utilization of existing data. Featuring contributions from both epidemiological and biostatistical scholars, this book is a practical resource for researchers, practitioners, and students in solving global health problems in research, education, training, and consultation.
Epidemiology
Author: Mark Woodward
Publisher: CRC Press
ISBN: 1482243202
Category : Mathematics
Languages : en
Pages : 844
Book Description
Highly praised for its broad, practical coverage, the second edition of this popular text incorporated the major statistical models and issues relevant to epidemiological studies. Epidemiology: Study Design and Data Analysis, Third Edition continues to focus on the quantitative aspects of epidemiological research. Updated and expanded, this edition shows students how statistical principles and techniques can help solve epidemiological problems. New to the Third Edition New chapter on risk scores and clinical decision rules New chapter on computer-intensive methods, including the bootstrap, permutation tests, and missing value imputation New sections on binomial regression models, competing risk, information criteria, propensity scoring, and splines Many more exercises and examples using both Stata and SAS More than 60 new figures After introducing study design and reviewing all the standard methods, this self-contained book takes students through analytical methods for both general and specific epidemiological study designs, including cohort, case-control, and intervention studies. In addition to classical methods, it now covers modern methods that exploit the enormous power of contemporary computers. The book also addresses the problem of determining the appropriate size for a study, discusses statistical modeling in epidemiology, covers methods for comparing and summarizing the evidence from several studies, and explains how to use statistical models in risk forecasting and assessing new biomarkers. The author illustrates the techniques with numerous real-world examples and interprets results in a practical way. He also includes an extensive list of references for further reading along with exercises to reinforce understanding. Web Resource A wealth of supporting material can be downloaded from the book’s CRC Press web page, including: Real-life data sets used in the text SAS and Stata programs used for examples in the text SAS and Stata programs for special techniques covered Sample size spreadsheet
Publisher: CRC Press
ISBN: 1482243202
Category : Mathematics
Languages : en
Pages : 844
Book Description
Highly praised for its broad, practical coverage, the second edition of this popular text incorporated the major statistical models and issues relevant to epidemiological studies. Epidemiology: Study Design and Data Analysis, Third Edition continues to focus on the quantitative aspects of epidemiological research. Updated and expanded, this edition shows students how statistical principles and techniques can help solve epidemiological problems. New to the Third Edition New chapter on risk scores and clinical decision rules New chapter on computer-intensive methods, including the bootstrap, permutation tests, and missing value imputation New sections on binomial regression models, competing risk, information criteria, propensity scoring, and splines Many more exercises and examples using both Stata and SAS More than 60 new figures After introducing study design and reviewing all the standard methods, this self-contained book takes students through analytical methods for both general and specific epidemiological study designs, including cohort, case-control, and intervention studies. In addition to classical methods, it now covers modern methods that exploit the enormous power of contemporary computers. The book also addresses the problem of determining the appropriate size for a study, discusses statistical modeling in epidemiology, covers methods for comparing and summarizing the evidence from several studies, and explains how to use statistical models in risk forecasting and assessing new biomarkers. The author illustrates the techniques with numerous real-world examples and interprets results in a practical way. He also includes an extensive list of references for further reading along with exercises to reinforce understanding. Web Resource A wealth of supporting material can be downloaded from the book’s CRC Press web page, including: Real-life data sets used in the text SAS and Stata programs used for examples in the text SAS and Stata programs for special techniques covered Sample size spreadsheet
Analysis of Cancer Risks in Populations Near Nuclear Facilities
Author: National Research Council
Publisher: National Academies Press
ISBN: 0309255716
Category : Medical
Languages : en
Pages : 424
Book Description
In the late 1980s, the National Cancer Institute initiated an investigation of cancer risks in populations near 52 commercial nuclear power plants and 10 Department of Energy nuclear facilities (including research and nuclear weapons production facilities and one reprocessing plant) in the United States. The results of the NCI investigation were used a primary resource for communicating with the public about the cancer risks near the nuclear facilities. However, this study is now over 20 years old. The U.S. Nuclear Regulatory Commission requested that the National Academy of Sciences provide an updated assessment of cancer risks in populations near USNRC-licensed nuclear facilities that utilize or process uranium for the production of electricity. Analysis of Cancer Risks in Populations near Nuclear Facilities: Phase 1 focuses on identifying scientifically sound approaches for carrying out an assessment of cancer risks associated with living near a nuclear facility, judgments about the strengths and weaknesses of various statistical power, ability to assess potential confounding factors, possible biases, and required effort. The results from this Phase 1 study will be used to inform the design of cancer risk assessment, which will be carried out in Phase 2. This report is beneficial for the general public, communities near nuclear facilities, stakeholders, healthcare providers, policy makers, state and local officials, community leaders, and the media.
Publisher: National Academies Press
ISBN: 0309255716
Category : Medical
Languages : en
Pages : 424
Book Description
In the late 1980s, the National Cancer Institute initiated an investigation of cancer risks in populations near 52 commercial nuclear power plants and 10 Department of Energy nuclear facilities (including research and nuclear weapons production facilities and one reprocessing plant) in the United States. The results of the NCI investigation were used a primary resource for communicating with the public about the cancer risks near the nuclear facilities. However, this study is now over 20 years old. The U.S. Nuclear Regulatory Commission requested that the National Academy of Sciences provide an updated assessment of cancer risks in populations near USNRC-licensed nuclear facilities that utilize or process uranium for the production of electricity. Analysis of Cancer Risks in Populations near Nuclear Facilities: Phase 1 focuses on identifying scientifically sound approaches for carrying out an assessment of cancer risks associated with living near a nuclear facility, judgments about the strengths and weaknesses of various statistical power, ability to assess potential confounding factors, possible biases, and required effort. The results from this Phase 1 study will be used to inform the design of cancer risk assessment, which will be carried out in Phase 2. This report is beneficial for the general public, communities near nuclear facilities, stakeholders, healthcare providers, policy makers, state and local officials, community leaders, and the media.
Epidemiology and Medical Statistics
Author:
Publisher: Elsevier
ISBN: 0080554210
Category : Mathematics
Languages : en
Pages : 871
Book Description
This volume, representing a compilation of authoritative reviews on a multitude of uses of statistics in epidemiology and medical statistics written by internationally renowned experts, is addressed to statisticians working in biomedical and epidemiological fields who use statistical and quantitative methods in their work. While the use of statistics in these fields has a long and rich history, explosive growth of science in general and clinical and epidemiological sciences in particular have gone through a see of change, spawning the development of new methods and innovative adaptations of standard methods. Since the literature is highly scattered, the Editors have undertaken this humble exercise to document a representative collection of topics of broad interest to diverse users. The volume spans a cross section of standard topics oriented toward users in the current evolving field, as well as special topics in much need which have more recent origins. This volume was prepared especially keeping the applied statisticians in mind, emphasizing applications-oriented methods and techniques, including references to appropriate software when relevant.· Contributors are internationally renowned experts in their respective areas· Addresses emerging statistical challenges in epidemiological, biomedical, and pharmaceutical research· Methods for assessing Biomarkers, analysis of competing risks· Clinical trials including sequential and group sequential, crossover designs, cluster randomized, and adaptive designs· Structural equations modelling and longitudinal data analysis
Publisher: Elsevier
ISBN: 0080554210
Category : Mathematics
Languages : en
Pages : 871
Book Description
This volume, representing a compilation of authoritative reviews on a multitude of uses of statistics in epidemiology and medical statistics written by internationally renowned experts, is addressed to statisticians working in biomedical and epidemiological fields who use statistical and quantitative methods in their work. While the use of statistics in these fields has a long and rich history, explosive growth of science in general and clinical and epidemiological sciences in particular have gone through a see of change, spawning the development of new methods and innovative adaptations of standard methods. Since the literature is highly scattered, the Editors have undertaken this humble exercise to document a representative collection of topics of broad interest to diverse users. The volume spans a cross section of standard topics oriented toward users in the current evolving field, as well as special topics in much need which have more recent origins. This volume was prepared especially keeping the applied statisticians in mind, emphasizing applications-oriented methods and techniques, including references to appropriate software when relevant.· Contributors are internationally renowned experts in their respective areas· Addresses emerging statistical challenges in epidemiological, biomedical, and pharmaceutical research· Methods for assessing Biomarkers, analysis of competing risks· Clinical trials including sequential and group sequential, crossover designs, cluster randomized, and adaptive designs· Structural equations modelling and longitudinal data analysis
Statistical Epidemiology
Author: Graham R. Law
Publisher: CABI
ISBN: 184593816X
Category : Medical
Languages : en
Pages : 231
Book Description
Statistics are a vital skill for epidemiologists and form an essential part of clinical medicine. This textbook introduces students to statistical epidemiology methods in a carefully structured and accessible format with clearly defined learning outcomes and suggested chapter orders that can be tailored to the needs of students at both undergraduate and graduate level from a range of academic backgrounds. The book covers study design, disease measuring, bias, error, analysis and modelling and is illustrated with figures, focus boxes, study questions and examples applicable to everyday clinical problems. Drawing on the authors' extensive teaching experience, the text provides an introduction to core statistical epidemiology that will be a valuable resource for students and lecturers in health and medical sciences and applied statistics, health staff, clinical researchers and data managers.
Publisher: CABI
ISBN: 184593816X
Category : Medical
Languages : en
Pages : 231
Book Description
Statistics are a vital skill for epidemiologists and form an essential part of clinical medicine. This textbook introduces students to statistical epidemiology methods in a carefully structured and accessible format with clearly defined learning outcomes and suggested chapter orders that can be tailored to the needs of students at both undergraduate and graduate level from a range of academic backgrounds. The book covers study design, disease measuring, bias, error, analysis and modelling and is illustrated with figures, focus boxes, study questions and examples applicable to everyday clinical problems. Drawing on the authors' extensive teaching experience, the text provides an introduction to core statistical epidemiology that will be a valuable resource for students and lecturers in health and medical sciences and applied statistics, health staff, clinical researchers and data managers.
Clinical Epidemiology and Biostatistics
Author: Michael S. Kramer
Publisher: Springer Science & Business Media
ISBN: 3642613721
Category : Science
Languages : en
Pages : 309
Book Description
Here is a book for clinicians, clinical investigators, trainees, and graduates who wish to develop their proficiency in the planning, execution, and interpretation of clinical and epidemiological research. Emphasis is placed on the design and analysis of research studies involving human subjects where the primary interest concerns principles of analytic (cause-and- effect) inference. The topic is presented from the standpoint of the clinician and assumes no previous knowledge of epidemiology, research design or statistics. Extensive use is made of illustrative examples from a variety of clinical specialties and subspecialties. The book is divided into three parts. Part I deals with epidemiological research design and analytic inference, including such issues as measurement, rates, analytic bias, and the main forms of observational and experimental epidemiological studies. Part II presents the principles and applications of biostatistics, with emphasis on statistical inference. Part III comprises four chapters covering such topics as diagnostic tests, decision analysis, survival (life-table) analysis, and causality.
Publisher: Springer Science & Business Media
ISBN: 3642613721
Category : Science
Languages : en
Pages : 309
Book Description
Here is a book for clinicians, clinical investigators, trainees, and graduates who wish to develop their proficiency in the planning, execution, and interpretation of clinical and epidemiological research. Emphasis is placed on the design and analysis of research studies involving human subjects where the primary interest concerns principles of analytic (cause-and- effect) inference. The topic is presented from the standpoint of the clinician and assumes no previous knowledge of epidemiology, research design or statistics. Extensive use is made of illustrative examples from a variety of clinical specialties and subspecialties. The book is divided into three parts. Part I deals with epidemiological research design and analytic inference, including such issues as measurement, rates, analytic bias, and the main forms of observational and experimental epidemiological studies. Part II presents the principles and applications of biostatistics, with emphasis on statistical inference. Part III comprises four chapters covering such topics as diagnostic tests, decision analysis, survival (life-table) analysis, and causality.
Statistical Models in Epidemiology
Author: David Clayton
Publisher: Oxford University Press, USA
ISBN: 0199671184
Category : Mathematics
Languages : en
Pages : 376
Book Description
This self-contained account of the statistical basis of epidemiology has been written for those with a basic training in biology. It is specifically intended for students enrolled for a masters degree in epidemiology, clinical epidemiology, or biostatistics.
Publisher: Oxford University Press, USA
ISBN: 0199671184
Category : Mathematics
Languages : en
Pages : 376
Book Description
This self-contained account of the statistical basis of epidemiology has been written for those with a basic training in biology. It is specifically intended for students enrolled for a masters degree in epidemiology, clinical epidemiology, or biostatistics.
Applying Quantitative Bias Analysis to Epidemiologic Data
Author: Timothy L. Lash
Publisher: Springer Science & Business Media
ISBN: 0387879595
Category : Medical
Languages : en
Pages : 200
Book Description
Bias analysis quantifies the influence of systematic error on an epidemiology study’s estimate of association. The fundamental methods of bias analysis in epi- miology have been well described for decades, yet are seldom applied in published presentations of epidemiologic research. More recent advances in bias analysis, such as probabilistic bias analysis, appear even more rarely. We suspect that there are both supply-side and demand-side explanations for the scarcity of bias analysis. On the demand side, journal reviewers and editors seldom request that authors address systematic error aside from listing them as limitations of their particular study. This listing is often accompanied by explanations for why the limitations should not pose much concern. On the supply side, methods for bias analysis receive little attention in most epidemiology curriculums, are often scattered throughout textbooks or absent from them altogether, and cannot be implemented easily using standard statistical computing software. Our objective in this text is to reduce these supply-side barriers, with the hope that demand for quantitative bias analysis will follow.
Publisher: Springer Science & Business Media
ISBN: 0387879595
Category : Medical
Languages : en
Pages : 200
Book Description
Bias analysis quantifies the influence of systematic error on an epidemiology study’s estimate of association. The fundamental methods of bias analysis in epi- miology have been well described for decades, yet are seldom applied in published presentations of epidemiologic research. More recent advances in bias analysis, such as probabilistic bias analysis, appear even more rarely. We suspect that there are both supply-side and demand-side explanations for the scarcity of bias analysis. On the demand side, journal reviewers and editors seldom request that authors address systematic error aside from listing them as limitations of their particular study. This listing is often accompanied by explanations for why the limitations should not pose much concern. On the supply side, methods for bias analysis receive little attention in most epidemiology curriculums, are often scattered throughout textbooks or absent from them altogether, and cannot be implemented easily using standard statistical computing software. Our objective in this text is to reduce these supply-side barriers, with the hope that demand for quantitative bias analysis will follow.
Epidemiological Research Methods
Author: Donald R. McNeil
Publisher: John Wiley & Sons
ISBN: 9780471961963
Category : Mathematics
Languages : en
Pages : 320
Book Description
The concepts of epidemiology, the science that uses statistical methods to investigate associations between risk factors and disease outcomes in human populations, are developed using examples involving real data from published studies. The relevant statistical methods are developed systematically to provide an integrated approach to observational and experimental studies. After covering basic measurement, study design, and study credibility issues, the author continues with basic statistical methods and techniques for adjusting risk estimates for confounders. Statistical models including logistic regression and the proportional hazards model for survival analysis are explained in detail in the following chapters, concluding with an explanation of the general methods for determining the sample size and power requirements for an epidemiological study. Taking advantage of the power, accessibility and user-friendliness of modern computer packages, the author uses a variety of interesting data sets and graphical displays to illustrate the methods. Epidemiological Research Methods will be of interest to students and research workers who need to learn and appreciate modern approaches to the subject. Without unnecessary emphasis on mathematics or theory, the book will enable the reader to gain a greater level of understanding of the underlying methods than is normally provided in books on epidemiology.
Publisher: John Wiley & Sons
ISBN: 9780471961963
Category : Mathematics
Languages : en
Pages : 320
Book Description
The concepts of epidemiology, the science that uses statistical methods to investigate associations between risk factors and disease outcomes in human populations, are developed using examples involving real data from published studies. The relevant statistical methods are developed systematically to provide an integrated approach to observational and experimental studies. After covering basic measurement, study design, and study credibility issues, the author continues with basic statistical methods and techniques for adjusting risk estimates for confounders. Statistical models including logistic regression and the proportional hazards model for survival analysis are explained in detail in the following chapters, concluding with an explanation of the general methods for determining the sample size and power requirements for an epidemiological study. Taking advantage of the power, accessibility and user-friendliness of modern computer packages, the author uses a variety of interesting data sets and graphical displays to illustrate the methods. Epidemiological Research Methods will be of interest to students and research workers who need to learn and appreciate modern approaches to the subject. Without unnecessary emphasis on mathematics or theory, the book will enable the reader to gain a greater level of understanding of the underlying methods than is normally provided in books on epidemiology.