Environmental and Developmental Regulation of Carbon Cycling in a Warm-temperate Forest PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Environmental and Developmental Regulation of Carbon Cycling in a Warm-temperate Forest PDF full book. Access full book title Environmental and Developmental Regulation of Carbon Cycling in a Warm-temperate Forest by John E. Drake. Download full books in PDF and EPUB format.

Environmental and Developmental Regulation of Carbon Cycling in a Warm-temperate Forest

Environmental and Developmental Regulation of Carbon Cycling in a Warm-temperate Forest PDF Author: John E. Drake
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description
Anthropogenic emissions of CO2 and other greenhouse gases have lead to a current atmospheric CO2 concentration that is unprecedented in the recent geological history of the earth. Nearly half of anthropogenic CO2 emissions have been sequestered in the terrestrial biosphere and oceans, slowing the climate change associated with this greenhouse gas. However, the future of this uptake is uncertain. One large sink for atmospheric CO2, the growth of young temperate forests, may decline as these forests mature and undergo successional change in community composition and an expected decline in Net Primary Production (NPP) with increasing age. To examine the effect of elevated atmospheric CO2 concentrations on ecosystem C loss via autotrophic respiration (Ra), I measured rates of fine root respiration at the Duke Free Air CO2 Enrichment (FACE) experiment, the longest running ecosystem level CO2 experiment in a forest. Fine roots were investigated because their respiration was known to comprise a large but poorly quantified portion of total Ra. Growth under elevated CO2 increased C release from fine root respiration because of higher amounts of fine root biomass; thus, some of the extra C fixed because of increased photosynthesis under elevated CO2 was immediately respired and not sequestered by the ecosystem. I also investigated C storage more broadly by synthesizing twelve years of research on belowground C and N cycling at Duke FACE in an attempt to mechanistically explain two phenomena: (1) there has been no increase in soil C despite 12 years of increased C inputs to soils under elevated CO2, and (2) the trees have increased soil N acquisition under elevated CO2 and maintained the positive CO2-induced growth response over a long time period (>10 years). The enhanced rates of NPP under elevated CO2 increased the flux of C belowground, accelerated the rate of soil organic matter decomposition and increased nitrogen uptake from the soil through a priming mechanism. As a consequence of accelerated rates of soil organic matter decomposition, the aboveground C sink in biomass was maintained, but no additional C was stored in the soil, the longest lived pool of C in aggrading forests. The lack of C buildup in soils makes long-term mitigation of anthropogenic CO2 emissions through sequestration by temperate forest ecosystems less likely, although C storage in biomass contributes to a decadal-scale C sink. In an attempt to understand how NPP and C storage varies at longer timescales in this forest type, I established a chronosequence of 12 forest stands ranging from 15 to 115 years old. These stands spanned the predictable and expected pattern of secondary succession in this region, where early-successional loblolly pines (Pinus taeda) were replaced by shade tolerant hardwoods such as oaks (Quercus spp.), hickories (Cayra spp.), and a suite of other species. NPP declined strongly with increasing age, from ~1000 gC m-2 y-1 at 15 years of age to a stable value of ~600 gC m-2 y-1 at >50 years of age. This decline was driven exclusively by an 80% decline in pine wood production, and partially alleviated by increasing production by mid-successional hardwoods. The decline in pine production was driven by a decline in Gross Primary Production (GPP), not by increasing Ra as was previously thought. The decline in GPP was consistent with increasing hydraulic limitation of leaf-level photosynthetic rates, but not consistent with increasing nitrogen limitation to photosynthetic capacity. Thus, I conclude that old, tall pine trees reduce stomatal conductance more frequently than shorter, young pine trees, which reduces leaf-level photosynthetic rates, GPP, and thus NPP. This suggests that NPP in old forests will be more strongly stimulated through a CO2-induced increase in GPP rather than the presumed decrease in NPP that would result from warming-induced increases in Ra.

Environmental and Developmental Regulation of Carbon Cycling in a Warm-temperate Forest

Environmental and Developmental Regulation of Carbon Cycling in a Warm-temperate Forest PDF Author: John E. Drake
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description
Anthropogenic emissions of CO2 and other greenhouse gases have lead to a current atmospheric CO2 concentration that is unprecedented in the recent geological history of the earth. Nearly half of anthropogenic CO2 emissions have been sequestered in the terrestrial biosphere and oceans, slowing the climate change associated with this greenhouse gas. However, the future of this uptake is uncertain. One large sink for atmospheric CO2, the growth of young temperate forests, may decline as these forests mature and undergo successional change in community composition and an expected decline in Net Primary Production (NPP) with increasing age. To examine the effect of elevated atmospheric CO2 concentrations on ecosystem C loss via autotrophic respiration (Ra), I measured rates of fine root respiration at the Duke Free Air CO2 Enrichment (FACE) experiment, the longest running ecosystem level CO2 experiment in a forest. Fine roots were investigated because their respiration was known to comprise a large but poorly quantified portion of total Ra. Growth under elevated CO2 increased C release from fine root respiration because of higher amounts of fine root biomass; thus, some of the extra C fixed because of increased photosynthesis under elevated CO2 was immediately respired and not sequestered by the ecosystem. I also investigated C storage more broadly by synthesizing twelve years of research on belowground C and N cycling at Duke FACE in an attempt to mechanistically explain two phenomena: (1) there has been no increase in soil C despite 12 years of increased C inputs to soils under elevated CO2, and (2) the trees have increased soil N acquisition under elevated CO2 and maintained the positive CO2-induced growth response over a long time period (>10 years). The enhanced rates of NPP under elevated CO2 increased the flux of C belowground, accelerated the rate of soil organic matter decomposition and increased nitrogen uptake from the soil through a priming mechanism. As a consequence of accelerated rates of soil organic matter decomposition, the aboveground C sink in biomass was maintained, but no additional C was stored in the soil, the longest lived pool of C in aggrading forests. The lack of C buildup in soils makes long-term mitigation of anthropogenic CO2 emissions through sequestration by temperate forest ecosystems less likely, although C storage in biomass contributes to a decadal-scale C sink. In an attempt to understand how NPP and C storage varies at longer timescales in this forest type, I established a chronosequence of 12 forest stands ranging from 15 to 115 years old. These stands spanned the predictable and expected pattern of secondary succession in this region, where early-successional loblolly pines (Pinus taeda) were replaced by shade tolerant hardwoods such as oaks (Quercus spp.), hickories (Cayra spp.), and a suite of other species. NPP declined strongly with increasing age, from ~1000 gC m-2 y-1 at 15 years of age to a stable value of ~600 gC m-2 y-1 at >50 years of age. This decline was driven exclusively by an 80% decline in pine wood production, and partially alleviated by increasing production by mid-successional hardwoods. The decline in pine production was driven by a decline in Gross Primary Production (GPP), not by increasing Ra as was previously thought. The decline in GPP was consistent with increasing hydraulic limitation of leaf-level photosynthetic rates, but not consistent with increasing nitrogen limitation to photosynthetic capacity. Thus, I conclude that old, tall pine trees reduce stomatal conductance more frequently than shorter, young pine trees, which reduces leaf-level photosynthetic rates, GPP, and thus NPP. This suggests that NPP in old forests will be more strongly stimulated through a CO2-induced increase in GPP rather than the presumed decrease in NPP that would result from warming-induced increases in Ra.

Managing Forest Carbon in a Changing Climate

Managing Forest Carbon in a Changing Climate PDF Author: Mark S. Ashton
Publisher: Springer Science & Business Media
ISBN: 940072232X
Category : Technology & Engineering
Languages : en
Pages : 411

Book Description
The aim of this book is to provide an accessible overview for advanced students, resource professionals such as land managers, and policy makers to acquaint themselves with the established science, management practices and policies that facilitate sequestration and allow for the storage of carbon in forests. The book has value to the reader to better understand: a) carbon science and management of forests and wood products; b) the underlying social mechanisms of deforestation; and c) the policy options in order to formulate a cohesive strategy for implementing forest carbon projects and ultimately reducing emissions from forest land use.

Carbon Sequestration in Forest Ecosystems

Carbon Sequestration in Forest Ecosystems PDF Author: Klaus Lorenz
Publisher: Springer Science & Business Media
ISBN: 9048132665
Category : Science
Languages : en
Pages : 289

Book Description
Carbon Sequestration in Forest Ecosystems is a comprehensive book describing the basic processes of carbon dynamics in forest ecosystems, their contribution to carbon sequestration and implications for mitigating abrupt climate change. This book provides the information on processes, factors and causes influencing carbon sequestration in forest ecosystems. Drawing upon most up-to-date references, this book summarizes the current understanding of carbon sequestration processes in forest ecosystems while identifying knowledge gaps for future research, Thus, this book is a valuable knowledge source for students, scientists, forest managers and policy makers.

Forests, Carbon Cycle and Climate Change

Forests, Carbon Cycle and Climate Change PDF Author: Denis Loustau
Publisher: Editions Quae
ISBN: 2759203840
Category : Science
Languages : en
Pages : 314

Book Description
The results presented in this book summarize the main findings of the CARBOFOR project, which brought together 52 scientists from 14 research units to investigate the effects of future climate on the carbon cycle, the productivity and vulnerability of French forests. This book explains the current forest carbon cycle in temperate and Mediterranean climates, including the dynamics of soil carbon and the total carbon stock of French forests, based on forest inventories. It reviews and illustrates the main ground-based methods for estimating carbon stocks in tree biomass. Spatial variations in projected climate change over metropolitan France throughout the 21st century are described. The book then goes on to consider the impacts of climate change on tree phenology and forest carbon balance, evapotranspiration and production as well as their first order interaction with forest management alternatives. The impact of climate change on forest vulnerability is analysed. A similar simulation study was carried out for a range of pathogenic fungi, emphasizing the importance of both warming and precipitation changes. The consequences of climate change on the occurrence of forest fires and the forest carbon cycle in the Mediterranean zone are also considered.A valuable reference for researchers and academics, forest engineers and managers, and graduate level students in forest ecology, ecological modelling and forestry.

Carbon Sequestration in Forests

Carbon Sequestration in Forests PDF Author: Ross W. Gorte
Publisher: DIANE Publishing
ISBN: 1437922678
Category : Technology & Engineering
Languages : en
Pages : 28

Book Description
Contents: (1) Background: Congressional Interest in Carbon Sequestration; (2) Carbon Cycling in Forests: The Forest Cycle; Forest Types: Tropical Forests; Temperate Forests; Boreal Forests; (3) Measuring and Altering Forest Carbon Levels: Forest Carbon Accounting; Land Use Changes; Forestry Events and Management Activities: Vegetation and Soil Carbon; Forest Events ¿ Wildfires; Forestry Practices; Wood Energy; Leakage: Land Use Leakage; Product Demand Leakage; Federal Government Programs: Federal Forests; Federal Assistance for State and Private Forestry; Federal Tax Expenditures; Federal Programs Affecting Land Use; Accounting for Forest Carbon Sequestration; (4) Conclusions. Table.

Carbon Cycles and Climate

Carbon Cycles and Climate PDF Author: Jerry S. Olson
Publisher:
ISBN:
Category : Carbon cycle (Biogeochemistry)
Languages : en
Pages : 260

Book Description
This partially annotated bibliography contains the first 1000 references from a computerized file of literature on the global ecological implications of carbon cycles and climatic changes. Many early citations originated from the Biogeochemical Ecological Information Center established at Oak Ridge National Laboratory in 1968 and from profiles of computerized files such as Government Research Abstracts (GRA) and Biological Abstracts (BA). Later citations have been extracted from the open literature through 1978 and early 1979, from government reports and impact statements, and from profiles of GRA, BA, and the Energy Data Base of the Department of Energy Technical Information Center, Oak Ridge, Tennessee. The subject categories covered by this bibliography may be divided into two main topics: carbon cycling and climate system analysis. Volume I contains an introduction and overview. Volume 2 contains an alphabetical (by author) listing of citations. Volume 3 provides indexes for author, organization (corporate authority), keywords (or free index terms), taxonomic category, subject category, Chemical Abstracts codes, Biological Abstracts codes (crosscode), and COSATI/Weekly Government Abstracts codes concentrated with permuted title words.

Temperate forest carbon cycling

Temperate forest carbon cycling PDF Author: Minda R. Berbeco
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Book Description


Carbon and Nitrogen Cycling in European Forest Ecosystems

Carbon and Nitrogen Cycling in European Forest Ecosystems PDF Author: Ernst-Detlef Schulze
Publisher: Springer Science & Business Media
ISBN: 3642572197
Category : Science
Languages : en
Pages : 520

Book Description
This volume quantifies carbon storage in managed forest ecosystems not only in biomass, but also in all soil compartments. It investigates the interaction between the carbon and nitrogen cycles by working along a north-south transect through Europe that starts in northern Sweden, passes through a N-deposition maximum in central Europe and ends in Italy. For the first time biogeochemical processes are linked to biodiversity on a large geographic scale and with special focus on soil organisms. The accompanying CD-ROM provides a complete database of all flux, storage and species observations for modellers.

The Role of Temperate Zone Forests in the World Carbon Cycle

The Role of Temperate Zone Forests in the World Carbon Cycle PDF Author: Thomas V. Armentano
Publisher:
ISBN:
Category : Atmospheric carbon dioxide
Languages : en
Pages : 82

Book Description


Forests, carbon cycle, and climate change

Forests, carbon cycle, and climate change PDF Author: Denis Loustau
Publisher:
ISBN: 9782759203857
Category : Biogeochemical cycles
Languages : en
Pages : 311

Book Description