Author: Nobuoki Eshima
Publisher: Springer Nature
ISBN: 9811525528
Category : Mathematics
Languages : en
Pages : 263
Book Description
This book reconsiders statistical methods from the point of view of entropy, and introduces entropy-based approaches for data analysis. Further, it interprets basic statistical methods, such as the chi-square statistic, t-statistic, F-statistic and the maximum likelihood estimation in the context of entropy. In terms of categorical data analysis, the book discusses the entropy correlation coefficient (ECC) and the entropy coefficient of determination (ECD) for measuring association and/or predictive powers in association models, and generalized linear models (GLMs). Through association and GLM frameworks, it also describes ECC and ECD in correlation and regression analyses for continuous random variables. In multivariate statistical analysis, canonical correlation analysis, T2-statistic, and discriminant analysis are discussed in terms of entropy. Moreover, the book explores the efficiency of test procedures in statistical tests of hypotheses using entropy. Lastly, it presents an entropy-based path analysis for structural GLMs, which is applied in factor analysis and latent structure models. Entropy is an important concept for dealing with the uncertainty of systems of random variables and can be applied in statistical methodologies. This book motivates readers, especially young researchers, to address the challenge of new approaches to statistical data analysis and behavior-metric studies.
Statistical Data Analysis and Entropy
Author: Nobuoki Eshima
Publisher: Springer Nature
ISBN: 9811525528
Category : Mathematics
Languages : en
Pages : 263
Book Description
This book reconsiders statistical methods from the point of view of entropy, and introduces entropy-based approaches for data analysis. Further, it interprets basic statistical methods, such as the chi-square statistic, t-statistic, F-statistic and the maximum likelihood estimation in the context of entropy. In terms of categorical data analysis, the book discusses the entropy correlation coefficient (ECC) and the entropy coefficient of determination (ECD) for measuring association and/or predictive powers in association models, and generalized linear models (GLMs). Through association and GLM frameworks, it also describes ECC and ECD in correlation and regression analyses for continuous random variables. In multivariate statistical analysis, canonical correlation analysis, T2-statistic, and discriminant analysis are discussed in terms of entropy. Moreover, the book explores the efficiency of test procedures in statistical tests of hypotheses using entropy. Lastly, it presents an entropy-based path analysis for structural GLMs, which is applied in factor analysis and latent structure models. Entropy is an important concept for dealing with the uncertainty of systems of random variables and can be applied in statistical methodologies. This book motivates readers, especially young researchers, to address the challenge of new approaches to statistical data analysis and behavior-metric studies.
Publisher: Springer Nature
ISBN: 9811525528
Category : Mathematics
Languages : en
Pages : 263
Book Description
This book reconsiders statistical methods from the point of view of entropy, and introduces entropy-based approaches for data analysis. Further, it interprets basic statistical methods, such as the chi-square statistic, t-statistic, F-statistic and the maximum likelihood estimation in the context of entropy. In terms of categorical data analysis, the book discusses the entropy correlation coefficient (ECC) and the entropy coefficient of determination (ECD) for measuring association and/or predictive powers in association models, and generalized linear models (GLMs). Through association and GLM frameworks, it also describes ECC and ECD in correlation and regression analyses for continuous random variables. In multivariate statistical analysis, canonical correlation analysis, T2-statistic, and discriminant analysis are discussed in terms of entropy. Moreover, the book explores the efficiency of test procedures in statistical tests of hypotheses using entropy. Lastly, it presents an entropy-based path analysis for structural GLMs, which is applied in factor analysis and latent structure models. Entropy is an important concept for dealing with the uncertainty of systems of random variables and can be applied in statistical methodologies. This book motivates readers, especially young researchers, to address the challenge of new approaches to statistical data analysis and behavior-metric studies.
Entropy Measures for Data Analysis
Author: Karsten Keller
Publisher: MDPI
ISBN: 3039280325
Category : Science
Languages : en
Pages : 260
Book Description
Entropies and entropy-like quantities play an increasing role in modern non-linear data analysis. Fields that benefit from this application range from biosignal analysis to econophysics and engineering. This issue is a collection of papers touching on different aspects of entropy measures in data analysis, as well as theoretical and computational analyses. The relevant topics include the difficulty to achieve adequate application of entropy measures and the acceptable parameter choices for those entropy measures, entropy-based coupling, and similarity analysis, along with the utilization of entropy measures as features in automatic learning and classification. Various real data applications are given.
Publisher: MDPI
ISBN: 3039280325
Category : Science
Languages : en
Pages : 260
Book Description
Entropies and entropy-like quantities play an increasing role in modern non-linear data analysis. Fields that benefit from this application range from biosignal analysis to econophysics and engineering. This issue is a collection of papers touching on different aspects of entropy measures in data analysis, as well as theoretical and computational analyses. The relevant topics include the difficulty to achieve adequate application of entropy measures and the acceptable parameter choices for those entropy measures, entropy-based coupling, and similarity analysis, along with the utilization of entropy measures as features in automatic learning and classification. Various real data applications are given.
Maximum Entropy and Bayesian Methods
Author: John Skilling
Publisher: Springer Science & Business Media
ISBN: 9401578605
Category : Mathematics
Languages : en
Pages : 521
Book Description
Cambridge, England, 1988
Publisher: Springer Science & Business Media
ISBN: 9401578605
Category : Mathematics
Languages : en
Pages : 521
Book Description
Cambridge, England, 1988
Entropy Measures, Maximum Entropy Principle and Emerging Applications
Author: Karmeshu
Publisher: Springer
ISBN: 3540362126
Category : Technology & Engineering
Languages : en
Pages : 300
Book Description
The last two decades have witnessed an enormous growth with regard to ap plications of information theoretic framework in areas of physical, biological, engineering and even social sciences. In particular, growth has been spectac ular in the field of information technology,soft computing,nonlinear systems and molecular biology. Claude Shannon in 1948 laid the foundation of the field of information theory in the context of communication theory. It is in deed remarkable that his framework is as relevant today as was when he 1 proposed it. Shannon died on Feb 24, 2001. Arun Netravali observes "As if assuming that inexpensive, high-speed processing would come to pass, Shan non figured out the upper limits on communication rates. First in telephone channels, then in optical communications, and now in wireless, Shannon has had the utmost value in defining the engineering limits we face". Shannon introduced the concept of entropy. The notable feature of the entropy frame work is that it enables quantification of uncertainty present in a system. In many realistic situations one is confronted only with partial or incomplete information in the form of moment, or bounds on these values etc. ; and it is then required to construct a probabilistic model from this partial information. In such situations, the principle of maximum entropy provides a rational ba sis for constructing a probabilistic model. It is thus necessary and important to keep track of advances in the applications of maximum entropy principle to ever expanding areas of knowledge.
Publisher: Springer
ISBN: 3540362126
Category : Technology & Engineering
Languages : en
Pages : 300
Book Description
The last two decades have witnessed an enormous growth with regard to ap plications of information theoretic framework in areas of physical, biological, engineering and even social sciences. In particular, growth has been spectac ular in the field of information technology,soft computing,nonlinear systems and molecular biology. Claude Shannon in 1948 laid the foundation of the field of information theory in the context of communication theory. It is in deed remarkable that his framework is as relevant today as was when he 1 proposed it. Shannon died on Feb 24, 2001. Arun Netravali observes "As if assuming that inexpensive, high-speed processing would come to pass, Shan non figured out the upper limits on communication rates. First in telephone channels, then in optical communications, and now in wireless, Shannon has had the utmost value in defining the engineering limits we face". Shannon introduced the concept of entropy. The notable feature of the entropy frame work is that it enables quantification of uncertainty present in a system. In many realistic situations one is confronted only with partial or incomplete information in the form of moment, or bounds on these values etc. ; and it is then required to construct a probabilistic model from this partial information. In such situations, the principle of maximum entropy provides a rational ba sis for constructing a probabilistic model. It is thus necessary and important to keep track of advances in the applications of maximum entropy principle to ever expanding areas of knowledge.
Entropy in Image Analysis
Author: Amelia Carolina Sparavigna
Publisher: MDPI
ISBN: 3039210920
Category : Technology & Engineering
Languages : en
Pages : 456
Book Description
Image analysis is a fundamental task for extracting information from images acquired across a range of different devices. Since reliable quantitative results are requested, image analysis requires highly sophisticated numerical and analytical methods—particularly for applications in medicine, security, and remote sensing, where the results of the processing may consist of vitally important data. The contributions to this book provide a good overview of the most important demands and solutions concerning this research area. In particular, the reader will find image analysis applied for feature extraction, encryption and decryption of data, color segmentation, and in the support new technologies. In all the contributions, entropy plays a pivotal role.
Publisher: MDPI
ISBN: 3039210920
Category : Technology & Engineering
Languages : en
Pages : 456
Book Description
Image analysis is a fundamental task for extracting information from images acquired across a range of different devices. Since reliable quantitative results are requested, image analysis requires highly sophisticated numerical and analytical methods—particularly for applications in medicine, security, and remote sensing, where the results of the processing may consist of vitally important data. The contributions to this book provide a good overview of the most important demands and solutions concerning this research area. In particular, the reader will find image analysis applied for feature extraction, encryption and decryption of data, color segmentation, and in the support new technologies. In all the contributions, entropy plays a pivotal role.
Interactive Knowledge Discovery and Data Mining in Biomedical Informatics
Author: Andreas Holzinger
Publisher: Springer
ISBN: 3662439689
Category : Computers
Languages : en
Pages : 373
Book Description
One of the grand challenges in our digital world are the large, complex and often weakly structured data sets, and massive amounts of unstructured information. This “big data” challenge is most evident in biomedical informatics: the trend towards precision medicine has resulted in an explosion in the amount of generated biomedical data sets. Despite the fact that human experts are very good at pattern recognition in dimensions of = 3; most of the data is high-dimensional, which makes manual analysis often impossible and neither the medical doctor nor the biomedical researcher can memorize all these facts. A synergistic combination of methodologies and approaches of two fields offer ideal conditions towards unraveling these problems: Human–Computer Interaction (HCI) and Knowledge Discovery/Data Mining (KDD), with the goal of supporting human capabilities with machine learning./ppThis state-of-the-art survey is an output of the HCI-KDD expert network and features 19 carefully selected and reviewed papers related to seven hot and promising research areas: Area 1: Data Integration, Data Pre-processing and Data Mapping; Area 2: Data Mining Algorithms; Area 3: Graph-based Data Mining; Area 4: Entropy-Based Data Mining; Area 5: Topological Data Mining; Area 6 Data Visualization and Area 7: Privacy, Data Protection, Safety and Security.
Publisher: Springer
ISBN: 3662439689
Category : Computers
Languages : en
Pages : 373
Book Description
One of the grand challenges in our digital world are the large, complex and often weakly structured data sets, and massive amounts of unstructured information. This “big data” challenge is most evident in biomedical informatics: the trend towards precision medicine has resulted in an explosion in the amount of generated biomedical data sets. Despite the fact that human experts are very good at pattern recognition in dimensions of = 3; most of the data is high-dimensional, which makes manual analysis often impossible and neither the medical doctor nor the biomedical researcher can memorize all these facts. A synergistic combination of methodologies and approaches of two fields offer ideal conditions towards unraveling these problems: Human–Computer Interaction (HCI) and Knowledge Discovery/Data Mining (KDD), with the goal of supporting human capabilities with machine learning./ppThis state-of-the-art survey is an output of the HCI-KDD expert network and features 19 carefully selected and reviewed papers related to seven hot and promising research areas: Area 1: Data Integration, Data Pre-processing and Data Mapping; Area 2: Data Mining Algorithms; Area 3: Graph-based Data Mining; Area 4: Entropy-Based Data Mining; Area 5: Topological Data Mining; Area 6 Data Visualization and Area 7: Privacy, Data Protection, Safety and Security.
Entropy Measures for Environmental Data
Author: Linda Altieri
Publisher: Springer Nature
ISBN: 9819725461
Category :
Languages : en
Pages : 172
Book Description
Publisher: Springer Nature
ISBN: 9819725461
Category :
Languages : en
Pages : 172
Book Description
The Mathematical Theory of Communication
Author: Claude E Shannon
Publisher: University of Illinois Press
ISBN: 025209803X
Category : Language Arts & Disciplines
Languages : en
Pages : 141
Book Description
Scientific knowledge grows at a phenomenal pace--but few books have had as lasting an impact or played as important a role in our modern world as The Mathematical Theory of Communication, published originally as a paper on communication theory more than fifty years ago. Republished in book form shortly thereafter, it has since gone through four hardcover and sixteen paperback printings. It is a revolutionary work, astounding in its foresight and contemporaneity. The University of Illinois Press is pleased and honored to issue this commemorative reprinting of a classic.
Publisher: University of Illinois Press
ISBN: 025209803X
Category : Language Arts & Disciplines
Languages : en
Pages : 141
Book Description
Scientific knowledge grows at a phenomenal pace--but few books have had as lasting an impact or played as important a role in our modern world as The Mathematical Theory of Communication, published originally as a paper on communication theory more than fifty years ago. Republished in book form shortly thereafter, it has since gone through four hardcover and sixteen paperback printings. It is a revolutionary work, astounding in its foresight and contemporaneity. The University of Illinois Press is pleased and honored to issue this commemorative reprinting of a classic.
Entropy Measures for Data Analysis: Theory, Algorithms and Applications
Author: Karsten Keller
Publisher:
ISBN: 9783039280339
Category : Engineering (General). Civil engineering (General)
Languages : en
Pages : 260
Book Description
Entropies and entropy-like quantities play an increasing role in modern non-linear data analysis. Fields that benefit from this application range from biosignal analysis to econophysics and engineering. This issue is a collection of papers touching on different aspects of entropy measures in data analysis, as well as theoretical and computational analyses. The relevant topics include the difficulty to achieve adequate application of entropy measures and the acceptable parameter choices for those entropy measures, entropy-based coupling, and similarity analysis, along with the utilization of entropy measures as features in automatic learning and classification. Various real data applications are given.
Publisher:
ISBN: 9783039280339
Category : Engineering (General). Civil engineering (General)
Languages : en
Pages : 260
Book Description
Entropies and entropy-like quantities play an increasing role in modern non-linear data analysis. Fields that benefit from this application range from biosignal analysis to econophysics and engineering. This issue is a collection of papers touching on different aspects of entropy measures in data analysis, as well as theoretical and computational analyses. The relevant topics include the difficulty to achieve adequate application of entropy measures and the acceptable parameter choices for those entropy measures, entropy-based coupling, and similarity analysis, along with the utilization of entropy measures as features in automatic learning and classification. Various real data applications are given.
Loss Data Analysis
Author: Henryk Gzyl
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110516136
Category : Mathematics
Languages : en
Pages : 235
Book Description
This volume deals with two complementary topics. On one hand the book deals with the problem of determining the the probability distribution of a positive compound random variable, a problem which appears in the banking and insurance industries, in many areas of operational research and in reliability problems in the engineering sciences. On the other hand, the methodology proposed to solve such problems, which is based on an application of the maximum entropy method to invert the Laplace transform of the distributions, can be applied to many other problems. The book contains applications to a large variety of problems, including the problem of dependence of the sample data used to estimate empirically the Laplace transform of the random variable. Contents Introduction Frequency models Individual severity models Some detailed examples Some traditional approaches to the aggregation problem Laplace transforms and fractional moment problems The standard maximum entropy method Extensions of the method of maximum entropy Superresolution in maxentropic Laplace transform inversion Sample data dependence Disentangling frequencies and decompounding losses Computations using the maxentropic density Review of statistical procedures
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110516136
Category : Mathematics
Languages : en
Pages : 235
Book Description
This volume deals with two complementary topics. On one hand the book deals with the problem of determining the the probability distribution of a positive compound random variable, a problem which appears in the banking and insurance industries, in many areas of operational research and in reliability problems in the engineering sciences. On the other hand, the methodology proposed to solve such problems, which is based on an application of the maximum entropy method to invert the Laplace transform of the distributions, can be applied to many other problems. The book contains applications to a large variety of problems, including the problem of dependence of the sample data used to estimate empirically the Laplace transform of the random variable. Contents Introduction Frequency models Individual severity models Some detailed examples Some traditional approaches to the aggregation problem Laplace transforms and fractional moment problems The standard maximum entropy method Extensions of the method of maximum entropy Superresolution in maxentropic Laplace transform inversion Sample data dependence Disentangling frequencies and decompounding losses Computations using the maxentropic density Review of statistical procedures