Enhancing Genetic Gain in a Wheat Breeding Program Using Genomics, Phenomics, Machine and Deep Learning Algorithms PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Enhancing Genetic Gain in a Wheat Breeding Program Using Genomics, Phenomics, Machine and Deep Learning Algorithms PDF full book. Access full book title Enhancing Genetic Gain in a Wheat Breeding Program Using Genomics, Phenomics, Machine and Deep Learning Algorithms by Karansher Singh Sandhu. Download full books in PDF and EPUB format.

Enhancing Genetic Gain in a Wheat Breeding Program Using Genomics, Phenomics, Machine and Deep Learning Algorithms

Enhancing Genetic Gain in a Wheat Breeding Program Using Genomics, Phenomics, Machine and Deep Learning Algorithms PDF Author: Karansher Singh Sandhu
Publisher:
ISBN:
Category : Wheat
Languages : en
Pages : 292

Book Description
Classical plant breeding has evolved considerably during the last century. However, the rate of genetic gain is insufficient to cope with a 2% annual increase in the human population, which is expected to reach 9.8 billion by 2050. Plant breeders and scientists are under pressure to develop new varieties and crops having higher yield, higher nutritional value, climate resilience, and disease and insect resistance. The solution requires the merging of new techniques like next-generation sequencing, genome-wide association studies, genomic selection, high throughput phenotyping, speed breeding, machine and deep learning, and CRISPR mediating gene editing with previously used tools and breeder's skills. The main goal of this research was to explore the potential of genomics, phenomics, machine and deep learning tools in a wheat (Triticum aestivum L.) breeding program. Grain yield and grain protein content (GPC) are two traits very important in hard red spring wheat breeding, yet difficult to select for due to their well-known negative correlation. A nested association mapping population was used to map the regions controlling the stability of grain protein content. This study also demonstrated that genome-wide prediction of GPC with ridge regression best linear unbiased (rrBLUP) estimates reached up to r = 0.69. Genomic selection (GS) is transforming the field of plant breeding and implementing models that improve prediction accuracy for complex traits is needed. Analytical methods for complex datasets traditionally used in other disciplines represent an opportunity for improving prediction accuracy. We predicted five different quantitative traits with varying genetic architecture using cross-validations, independent validations, and different sets of SNP markers. Deep learning models gave 0 to 5% higher prediction accuracy than rrBLUP model under both cross and independent validations for all five traits used in this study. Screening for end-use quality traits is usually secondary to grain yield due to high labor needs, cost of testing, and large seed requirements for phenotyping. Genomic selection provides an alternative to predict performance using genome-wide markers under forward and across location predictions, where previous years dataset can be used to build the models. Nine different models, including two machine learning and two deep learning models, were explored for cross-validation, forward, and across locations predictions. The prediction accuracies for different traits varied from 0.45 - 0.81, 0.29 - 0.55, and 0.27 - 0.50 under cross-validation, forward, and across location predictions. Genomics and phenomics have the potential to revolutionize the field of plant breeding. Incorporation of secondary correlated traits in GS models has been demonstrated to improve accuracy. In another study, ability to predict GPC and grain yield was assessed using secondary traits, univariate, covariate, and multivariate GS models for within and across cycle predictions. Our results indicate that GS accuracy increased by an average of 12 for GPC and 20% for grain yield by including secondary traits in the models. An increased prediction ability for GPC and grain yield with the inclusion of secondary traits demonstrates the potential to improve the genetic gain per unit time and cost in wheat breeding.

Enhancing Genetic Gain in a Wheat Breeding Program Using Genomics, Phenomics, Machine and Deep Learning Algorithms

Enhancing Genetic Gain in a Wheat Breeding Program Using Genomics, Phenomics, Machine and Deep Learning Algorithms PDF Author: Karansher Singh Sandhu
Publisher:
ISBN:
Category : Wheat
Languages : en
Pages : 292

Book Description
Classical plant breeding has evolved considerably during the last century. However, the rate of genetic gain is insufficient to cope with a 2% annual increase in the human population, which is expected to reach 9.8 billion by 2050. Plant breeders and scientists are under pressure to develop new varieties and crops having higher yield, higher nutritional value, climate resilience, and disease and insect resistance. The solution requires the merging of new techniques like next-generation sequencing, genome-wide association studies, genomic selection, high throughput phenotyping, speed breeding, machine and deep learning, and CRISPR mediating gene editing with previously used tools and breeder's skills. The main goal of this research was to explore the potential of genomics, phenomics, machine and deep learning tools in a wheat (Triticum aestivum L.) breeding program. Grain yield and grain protein content (GPC) are two traits very important in hard red spring wheat breeding, yet difficult to select for due to their well-known negative correlation. A nested association mapping population was used to map the regions controlling the stability of grain protein content. This study also demonstrated that genome-wide prediction of GPC with ridge regression best linear unbiased (rrBLUP) estimates reached up to r = 0.69. Genomic selection (GS) is transforming the field of plant breeding and implementing models that improve prediction accuracy for complex traits is needed. Analytical methods for complex datasets traditionally used in other disciplines represent an opportunity for improving prediction accuracy. We predicted five different quantitative traits with varying genetic architecture using cross-validations, independent validations, and different sets of SNP markers. Deep learning models gave 0 to 5% higher prediction accuracy than rrBLUP model under both cross and independent validations for all five traits used in this study. Screening for end-use quality traits is usually secondary to grain yield due to high labor needs, cost of testing, and large seed requirements for phenotyping. Genomic selection provides an alternative to predict performance using genome-wide markers under forward and across location predictions, where previous years dataset can be used to build the models. Nine different models, including two machine learning and two deep learning models, were explored for cross-validation, forward, and across locations predictions. The prediction accuracies for different traits varied from 0.45 - 0.81, 0.29 - 0.55, and 0.27 - 0.50 under cross-validation, forward, and across location predictions. Genomics and phenomics have the potential to revolutionize the field of plant breeding. Incorporation of secondary correlated traits in GS models has been demonstrated to improve accuracy. In another study, ability to predict GPC and grain yield was assessed using secondary traits, univariate, covariate, and multivariate GS models for within and across cycle predictions. Our results indicate that GS accuracy increased by an average of 12 for GPC and 20% for grain yield by including secondary traits in the models. An increased prediction ability for GPC and grain yield with the inclusion of secondary traits demonstrates the potential to improve the genetic gain per unit time and cost in wheat breeding.

Physiological, Molecular, and Genetic Perspectives of Wheat Improvement

Physiological, Molecular, and Genetic Perspectives of Wheat Improvement PDF Author: Shabir H Wani
Publisher: Springer Nature
ISBN: 3030595773
Category : Technology & Engineering
Languages : en
Pages : 296

Book Description
World population is growing at an alarming rate and may exceed 9.7 billion by 2050, whereas agricultural productivity has been negatively affected due to yield limiting factors such as biotic and abiotic stresses as a result of global climate change. Wheat is a staple crop for ~20% of the world population and its yield needs be augmented correspondingly in order to satisfy the demands of our increasing world population. “Green revolution”, the introduction of semi-dwarf, high yielding wheat varieties along with improved agronomic management practices, gave rise to a substantial increase in wheat production and self-sufficiency in developing countries that include Mexico, India and other south Asian countries. Since the late 1980’s, however, wheat yield is at a standoff with little fluctuation. The current trend is thus insufficient to meet the demands of an increasing world population. Therefore, while conventional breeding has had a great impact on wheat yield, with climate change becoming a reality, newer molecular breeding and management tools are needed to meet the goal of improving wheat yield for the future. With the advance in our understanding of the wheat genome and more importantly, the role of environmental interactions on productivity, the idea of genomic selection has been proposed to select for multi-genic quantitative traits early in the breeding cycle. Accordingly genomic selection may remodel wheat breeding with gain that is predicted to be 3 to 5 times that of crossbreeding. Phenomics (high-throughput phenotyping) is another fairly recent advancement using contemporary sensors for wheat germplasm screening and as a selection tool. Lastly, CRISPR/Cas9 ribonucleoprotein mediated genome editing technology has been successfully utilized for efficient and specific genome editing of hexaploid bread wheat. In summary, there has been exciting progresses in the development of non-GM wheat plants resistant to biotic and abiotic stress and/or wheat with improved nutritional quality. We believe it is important to highlight these novel research accomplishments for a broader audience, with the hope that our readers will ultimately adopt these powerful technologies for crops improvement in order to meet the demands of an expanding world population.

Improving Breeding Program Efficiency and Genetic Gain Through the Implementation of Genomic Selection in Diverse Wheat Germplasm

Improving Breeding Program Efficiency and Genetic Gain Through the Implementation of Genomic Selection in Diverse Wheat Germplasm PDF Author: Dylan Larkin
Publisher:
ISBN:
Category :
Languages : en
Pages : 506

Book Description
Genomic selection (GS) is an important tool for increasing genetic gain for economically important traits in breeding programs. Genomic selection uses molecular markers across the entire genome in order to predict the performance of breeding lines for a trait of interest prior to phenotyping. A training population (TP) of elite germplasm, representative of the University of Arkansas wheat breeding program, was developed in order to predict important agronomic and Fusarium head blight (FHB) resistance traits within the University of Arkansas wheat breeding program through cross-validation and forward prediction. A genome-wide association study (GWAS) was performed on the TP to identify novel FHB resistance loci for deoxynivalenol (DON) accumulation, Fusarium damaged kernels (FDK), incidence (INC), and severity (SEV). Significantly loci were used as fixed effects in a GS model (GS+GWAS) and compared to a naïve GS (NGS) model, where the NGS models had significantly higher prediction accuracies (PA) than the GS+GWAS models for all four FHB traits. The GWAS identified novel loci for all four FHB traits, most notably on chromosomes 3BL and 4BL. Multivariate GS (MVGS) models using correlated traits as covariates were also compared to NGS models and the MVGS models significantly outperformed the NGS models for all four traits. The same TP was also evaluated for five agronomic traits, including grain yield (GY), heading date (HD), maturity date (MD), plant height (PH), and test weight (TW), where MVGS models were compared to NGS models. Again, MVGS models significantly outperformed NGS models for all five agronomic traits, especially when there were strong genetic correlations between predicted traits and covariates. Additionally, MVGS models were tested using GY data for genotypes only grown in some environments to predict said genotypes in missing environments. This method significantly improved PA for GY between 6% and 21% for four of six tested environments. The abovementioned TP was then used for forward prediction to predict GY for untested F4:6 breeding lines and DON, FDK, and SEV for F4:7 breeding lines. The MVGS models were comparable to phenotypic selection and had higher selection accuracies for two of three breeding cycles for GY, both cycles for DON, and at least one cycle for FDK and SEV. The MVGS model also had higher PAs for all four traits compared with the NGS models. These results show that GS, and MVGS, can be successfully implemented in a wheat breeding program over multiple breeding cycles and can be effective alongside phenotypic selection for economically important traits. The MVGS models are particularly effective when predicted traits share strong genetic correlations with covariate traits, and covariate traits have a higher heritability than the predicted traits.

Utilizing a Historical Wheat Collection to Develop New Tools for Modern Plant Breeding

Utilizing a Historical Wheat Collection to Develop New Tools for Modern Plant Breeding PDF Author: Trevor W. Rife
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description
The Green Revolution is credited with saving billions of lives by effectively harnessing new genetic resources and breeding strategies to create high-yielding varieties for countries lacking adequate food security. To keep the next billion people in a state of food security, plant breeders will need to rapidly incorporate novel approaches and technologies into their breeding programs. The work presented here describes new genomic and phenomic strategies and tools aimed at accelerating genetic gain in plant breeding. Plant breeders have long relied on regional testing networks to evaluate new breeding lines across many locations. These are an attractive resource for both retrospective and contemporary analysis due to the vast amount of data available. To characterize genetic progress of plant breeding programs in the Central Plains, entries from the Southern Regional Performance Nursery dating back to 1992 were evaluated in field trials. The trend for annual improvement was 1.1% yr−1, matching similar reports for genetic gain. During the same time period, growth of on-farm yields stagnated. Genomic selection, a promising method to increase genetic gain, was tested using historical data from the SRPN. A temporal-based model showed that, on average, yield predictions outperformed a year-to-year phenotypic correlation. A program-based model found that the predictability of a breeding program was similar when using either data from a single program or from the entire regional collection. Modern DNA marker platforms either characterize a small number of loci or profile an entire genome. Spiked genotyping-by-sequencing (sGBS) was developed to address the need in breeding programs for both targeted loci and whole-genome selection. sGBS uses a low-cost, integrated approach that combines targeted amplicons with reduced representation genotyping-by-sequencing. This approach was validated using converted and newly-designed markers targeting known polymorphisms in the leaf rust resistance gene Lr34. Plant breeding programs generate vast quantities of data during evaluation and selection of superior genotypes. Many programs still rely on manual, error-prone methods to collect data. To make this process more robust, we have developed several open-source phenotyping apps with simple, intuitive interfaces. A contemporary Green Revolution will rely on integrating many of these innovative technologies into modern breeding programs.

Molecular Plant Breeding

Molecular Plant Breeding PDF Author: Yunbi Xu
Publisher: CABI
ISBN: 1845936248
Category : Science
Languages : en
Pages : 756

Book Description
Recent advances in plant genomics and molecular biology have revolutionized our understanding of plant genetics, providing new opportunities for more efficient and controllable plant breeding. Successful techniques require a solid understanding of the underlying molecular biology as well as experience in applied plant breeding. Bridging the gap between developments in biotechnology and its applications in plant improvement, Molecular Plant Breeding provides an integrative overview of issues from basic theories to their applications to crop improvement including molecular marker technology, gene mapping, genetic transformation, quantitative genetics, and breeding methodology.

Advances in Wheat Genetics: From Genome to Field

Advances in Wheat Genetics: From Genome to Field PDF Author: Yasunari Ogihara
Publisher: Springer
ISBN: 4431556753
Category : Science
Languages : en
Pages : 421

Book Description
This proceedings is a collection of 46 selected papers that were presented at the 12th International Wheat Genetics Symposium (IWGS). Since the launch of the wheat genome sequencing project in 2005, the arrival of draft genome sequences has marked a new era in wheat genetics and genomics, catalyzing rapid advancement in the field. This book provides a comprehensive review of the forefront of wheat research, across various important topics such as germplasm and genetic diversity, cytogenetics and allopolyploid evolution, genome sequencing, structural and functional genomics, gene function and molecular biology, biotic stress, abiotic stress, grain quality, and classical and molecular breeding. Following an introduction, 9 parts of the book are dedicated to each of these topics. A final, 11th part entitled “Toward Sustainable Wheat Production” contains 7 excellent papers that were presented in the 12th IWGS Special Session supported by the OECD. With rapid population growth and radical climate changes, the world faces a global food crisis and is in need of another Green Revolution to boost yields of wheat and other widely grown staple crops. Although this book focuses on wheat, many of the newly developed techniques and results presented here can be applied to other plant species with large and complex genomes. As such, this volume is highly recommended for all students and researchers in wheat sciences and related plant sciences and for those who are interested in stable food production and food security.

Applications of artificial intelligence, machine learning, and deep learning in plant breeding

Applications of artificial intelligence, machine learning, and deep learning in plant breeding PDF Author: Maliheh Eftekhari
Publisher: Frontiers Media SA
ISBN: 2832549713
Category : Science
Languages : en
Pages : 246

Book Description
Artificial Intelligence (AI) is an extensive concept that can be interpreted as a concentration on designing computer programs to train machines to accomplish functions like or better than hu-mans. An important subset of AI is Machine Learning (ML), in which a computer is provided with the capacity to learn its own patterns instead of the patterns and restrictions set by a human programmer, thus improving from experience. Deep Learning (DL), as a class of ML techniques, employs multilayered neural networks. The application of AI to plant science research is new and has grown significantly in recent years due to developments in calculation power, proficien-cies of hardware, and software progress. AI algorithms try to provide classifications and predic-tions. As applied to plant breeding, particularly omics data, ML as a given AI algorithm tries to translate omics data, which are intricate and include nonlinear interactions, into precise plant breeding. The applications of AI are extending rapidly and enhancing intensely in sophistication owing to the capability of rapid processing of huge and heterogeneous data. The conversion of AI techniques into accurate plant breeding is of great importance and will play a key role in the new era of plant breeding techniques in the coming years, particularly multi-omics data analysis. Advancements in plant breeding mainly depend upon developing statistical methods that harness the complicated data provided by analytical technologies identifying and quantifying genes, transcripts, proteins, metabolites, etc. The systems biology approach used in plant breeding, which integrates genomics, transcriptomics, proteomics, metabolomics, and other omics data, provides a massive amount of information. It is essential to perform accurate statistical analyses and AI methods such as ML and DL as well as optimization techniques to not only achieve an understanding of networks regulation and plant cell functions but develop high-precision models to predict the reaction of new Genetically Modified (GM) plants in special conditions. The constructed models will be of great economic importance, significantly reducing the time, labor, and instrument costs when finding optimized conditions for the bio-exploitation of plants. This Research Topic covers a wide range of studies on artificial intelligence-assisted plant breeding techniques, which contribute to plant biology and plant omics research. The relevant sub-topics include, but are not restricted to, the following: • AI-assisted plant breeding using omics and multi-omics approaches • Applying AI techniques along with multi-omics to recognize novel biomarkers associated with plant biological activities • Constructing up-to-date ML modeling and analyzing methods for dealing with omics data related to different plant growth processes • AI-assisted omics techniques in the plant defense process • Combining AI-assisted omics and multi-omics techniques using plant system biology approaches • Combining bioinformatics tools with AI approaches to analyze plant omics data • Designing cutting-edge workflow and developing innovative AI biology methods for omics data analysis

High-Throughput Field Phenotyping to Advance Precision Agriculture and Enhance Genetic Gain, Volume II

High-Throughput Field Phenotyping to Advance Precision Agriculture and Enhance Genetic Gain, Volume II PDF Author: Andreas Hund
Publisher: Frontiers Media SA
ISBN: 2832545459
Category : Science
Languages : en
Pages : 161

Book Description
This Research Topic is part of the High-Throughput Field Phenotyping to Advance Precision Agriculture and Enhance Genetic Gain series. The discipline of “High Throughput Field Phenotyping” (HTFP) has gained momentum in the last decade. HTFP includes a wide range of disciplines such as plant science, agronomy, remote sensing, and genetics; as well as biochemistry, imaging, computation, agricultural engineering, and robotics. High throughput technologies have substantially increased our ability to monitor and quantify field experiments and breeding nurseries at multiple scales. HTFP technology can not only rapidly and cost-effectively replace tedious and subjective ratings in the field, but can also unlock the potential of new, latent phenotypes representing underlying biological function. These advances have also provided the ability to follow crop growth and development across seasons at high and previously inaccessible spatial and temporal resolutions. By combining these data with measurements of all environmental factors affecting plant growth and yield (“Envirotyping”), genotypic-specific reaction norms and phenotypic plasticity may be elucidated.

High-Throughput Phenotyping in the Genomic Improvement of Livestock

High-Throughput Phenotyping in the Genomic Improvement of Livestock PDF Author: Fabyano Fonseca Silva
Publisher: Frontiers Media SA
ISBN: 2889711455
Category : Science
Languages : en
Pages : 216

Book Description


State-of-the-art Technology and Applications in Crop Phenomics

State-of-the-art Technology and Applications in Crop Phenomics PDF Author: Wanneng Yang
Publisher: Frontiers Media SA
ISBN: 2889717542
Category : Science
Languages : en
Pages : 267

Book Description