Enhancement of Pool Boiling Heat Transfer Using Thermally-conductive Microporous Coating Techniques PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Enhancement of Pool Boiling Heat Transfer Using Thermally-conductive Microporous Coating Techniques PDF full book. Access full book title Enhancement of Pool Boiling Heat Transfer Using Thermally-conductive Microporous Coating Techniques by Joo Han Kim. Download full books in PDF and EPUB format.

Enhancement of Pool Boiling Heat Transfer Using Thermally-conductive Microporous Coating Techniques

Enhancement of Pool Boiling Heat Transfer Using Thermally-conductive Microporous Coating Techniques PDF Author: Joo Han Kim
Publisher:
ISBN: 9780542979903
Category : Mechanical engineering
Languages : en
Pages :

Book Description
The present research is an experimental study of the enhancement of boiling heat transfer using microporous coating techniques. The current research is divided into four major phases. During the first phase, the effects of different metal particle sizes in the coating compound for thermally non-conductive microporous coating on pool boiling performance of refrigerants and water are investigated. The test surfaces were solid copper blocks with 1-cm2 base at atmospheric pressure in saturated FC-72, R-123, and water. Results showed that the surface treatment by non-conductive microporous coating significantly enhanced both nucleate boiling and critical heat flux of FC-72 and R-123. However, the enhancement of boiling performance for water was merely shown. In the second phase, thermally conductive microporous coatings to enhance boiling performance of water were developed. The first phase motivated efforts to fabricate microporous coatings with conducting binder options. The second phase was stemmed from an effort to combine the advantages of both a mixture batch type (inexpensive & easy process) and sintering/machining method (low thermal resistance of conduction). Two categories of surface treatment processes were considered in the current research. The first can be achieved by a chemical process, Multi-Staged Electroplating (MSE), which uses electricity in a chemical bath to deposit a microporous structure on the surface. The second is a soldering process, Multi-Temperature Soldering Process (MTSP), which binds the metal particles to generate optimum microporous cavities. Scanning Electron Microscope (SEM) and optical microscope images were obtained for thermally conductive microporous coated surfaces. During the third phase, the pool boiling performance of developed MSE and MTSP from second phase was confirmed for water. Results showed that the MSE and MTSP augmented the boiling performance not only for refrigerants but also for water significantly compared to non-conductive microporous coatings. Further investigation for possible future industrial applications of microporous coatings, such as indirect cooling for electronic chips, nanofluids for high power generation industries, and freezing problem of water, were conducted in the final phase.

Enhancement of Pool Boiling Heat Transfer Using Thermally-conductive Microporous Coating Techniques

Enhancement of Pool Boiling Heat Transfer Using Thermally-conductive Microporous Coating Techniques PDF Author: Joo Han Kim
Publisher:
ISBN: 9780542979903
Category : Mechanical engineering
Languages : en
Pages :

Book Description
The present research is an experimental study of the enhancement of boiling heat transfer using microporous coating techniques. The current research is divided into four major phases. During the first phase, the effects of different metal particle sizes in the coating compound for thermally non-conductive microporous coating on pool boiling performance of refrigerants and water are investigated. The test surfaces were solid copper blocks with 1-cm2 base at atmospheric pressure in saturated FC-72, R-123, and water. Results showed that the surface treatment by non-conductive microporous coating significantly enhanced both nucleate boiling and critical heat flux of FC-72 and R-123. However, the enhancement of boiling performance for water was merely shown. In the second phase, thermally conductive microporous coatings to enhance boiling performance of water were developed. The first phase motivated efforts to fabricate microporous coatings with conducting binder options. The second phase was stemmed from an effort to combine the advantages of both a mixture batch type (inexpensive & easy process) and sintering/machining method (low thermal resistance of conduction). Two categories of surface treatment processes were considered in the current research. The first can be achieved by a chemical process, Multi-Staged Electroplating (MSE), which uses electricity in a chemical bath to deposit a microporous structure on the surface. The second is a soldering process, Multi-Temperature Soldering Process (MTSP), which binds the metal particles to generate optimum microporous cavities. Scanning Electron Microscope (SEM) and optical microscope images were obtained for thermally conductive microporous coated surfaces. During the third phase, the pool boiling performance of developed MSE and MTSP from second phase was confirmed for water. Results showed that the MSE and MTSP augmented the boiling performance not only for refrigerants but also for water significantly compared to non-conductive microporous coatings. Further investigation for possible future industrial applications of microporous coatings, such as indirect cooling for electronic chips, nanofluids for high power generation industries, and freezing problem of water, were conducted in the final phase.

Enhancement of Pool Boiling and Evaporative Heat Transfer Using High Temperature Thermally Conductive Microporous Coatings

Enhancement of Pool Boiling and Evaporative Heat Transfer Using High Temperature Thermally Conductive Microporous Coatings PDF Author: Ajay Gurung
Publisher:
ISBN:
Category :
Languages : en
Pages : 91

Book Description
The present research is an experimental study of the enhancement of pool boiling and evaporative heat transfer using high temperature thermally conductive microporous coatings. Two major types of coatings were investigated: one that is based on copper powders on copper substrate and the other on aluminum powders on aluminum substrate. Both coatings were easy to fabricate with low costs compared to conventional sintering and plasma spraying techniques, yet have high bonding strength and some of them can operate at temperatures up to 670 °C. Multiple coating options were fabricated and tested in pool boiling of water in order to optimize the coating. These coating options consisted of variations of coating composition ratio, coating thickness and powder sizes. Average powder sizes ranged from 5 micron to 110 micron, and coating thicknesses from 75 micron to 340 micron, applied on flat 1x1cm2 test heaters. The heaters were tested in the horizontal, upward-facing orientation in saturated conditions at atmospheric pressure and under increasing heat flux. Pool boiling results revealed an optimum composition, powder size and thickness for each coating types. The maximum enhancement in boiling heat transfer coefficient obtained from copper microporous coatings was up to 8.7 times relative to a plain copper test surface and nearly doubled the critical heat flux while aluminum microporous coatings enhanced boiling heat transfer coefficient by 3.5 times compared to plain aluminum surface without any further enhancement in CHF. This enhancement was ascribed to the numerous microcavities of optimum shape and size formed within the porous matrix of the coating. The detail microstructures of the coatings from the top surface as well as cross-sections are also presented through optical microscope and SEM images. The optimized aluminum coatings were also explored on fluids other than water such as acetone and HFE-7100 for their boiling heat transfer enhancement. Furthermore, the same coatings were applied on evaporative spray and jetimpingement tests using water to broaden the application of aluminum microporous coatings in evaporative cooling technology.

Hydrodynamic Aspects of Boiling Heat Transfer

Hydrodynamic Aspects of Boiling Heat Transfer PDF Author: N. Zuber
Publisher:
ISBN:
Category : Heat
Languages : en
Pages : 216

Book Description


Enhancement of Pool Boiling Heat Transfer Using a Combination of Open Microchannels and Microporous Surfaces

Enhancement of Pool Boiling Heat Transfer Using a Combination of Open Microchannels and Microporous Surfaces PDF Author: Chinmay Patil
Publisher:
ISBN:
Category : Ebullition
Languages : en
Pages : 196

Book Description


Enhancement of Pool Boiling Critical Heat Flux in Dielectric Liquids

Enhancement of Pool Boiling Critical Heat Flux in Dielectric Liquids PDF Author: Mehmet Arik
Publisher:
ISBN:
Category :
Languages : en
Pages : 462

Book Description


High-pressure Pool-boiling Heat Transfer Enhancement and Mechanism on Engineered Surfaces

High-pressure Pool-boiling Heat Transfer Enhancement and Mechanism on Engineered Surfaces PDF Author: Smreeti Dahariya
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description
Boiling has received considerable attention in the technology advancement of electronics cooling for high-performance computing applications. Two-phase cooling has an advantage over a single-phase cooling in the high heat removal rate with a small thermal gradient due to the latent heat of vaporization. Many surface modifications have been done in the past including surface roughness, mixed wettability and, porous wick copper play a crucial role in the liquid-vapor phase change heat transfer. However, the mechanisms of high-pressure pool-boiling heat transfer enhancement due to surface modifications has not been well studied or understood. The properties of water, such as the latent heat of vaporization, surface tension, the difference in specific volume of liquid and vapor, decrease at high-pressure. High-pressure pool-boiling heat transfer enhancement is studied fundamentally on various engineered surfaces. The boiling tests are performed at a maximum pressure of 90 psig (620.5 kPa) and then compared to results at 0 psig (0 kPa). The results indicate that the pressure influences the boiling performance through changes in bubble dynamics. The bubble departure diameter, bubble departure frequency, and the active nucleation sites change with pressure. The pool-boiling heat transfer enhancement of a Teflon© coated surface is also experimentally tested, using water as the working fluid. The boiling results are compared with a plain surface at two different pressures, 30 and 45 psig. The maximum heat transfer enhancement is found at the low heat fluxes. At high heat fluxes, a negligible effect is observed in HTC. The primary reasons for the HTC enhancement at low heat fluxes are active nucleation sites at low wall superheat and bubble departure size. The Teflon© coated surface promotes nucleation because of the lower surface energy requirement. The boiling results are also obtained for wick surfaces. The wick surfaces are fabricated using a sintering process. The boiling results are compared with a plain surface. The reasons for enhancements in the pool-boiling performance are primarily due to increased bubble generation, higher bubble release frequency, reduced thermal-hydraulic length modulation, and enhanced thermal conductivity due to the sintered wick layer. The analysis suggests that the Rayleigh-critical wavelength decreases by 4.67 % of varying pressure, which may cause the bubble pinning between the gaps of sintered particles and avoids the bubble coalescence. Changes in the pitch distance indicate that a liquid-vapor phase separation happens at the solid/liquid interface, which impacts the heat-transfer performance significantly. Similarly, the role of the high-pressure over the wicking layer is further analyzed and studied. It is found that the critical flow length, [lambda]u reduces by three times with 200 [mu]m particles. The results suggest that the porous wick layer provides a capillary-assist to liquid flow effect, and delays the surface dry out. The surface modification and the pressure amplify the boiling heat transfer performance. All these reasons may contribute to the CHF, and HTC enhancement in the wicking layer at high-pressure.

Handbook of Thermal Science and Engineering

Handbook of Thermal Science and Engineering PDF Author:
Publisher: Springer
ISBN: 9783319266947
Category : Science
Languages : en
Pages : 0

Book Description
This Handbook provides researchers, faculty, design engineers in industrial R&D, and practicing engineers in the field concise treatments of advanced and more-recently established topics in thermal science and engineering, with an important emphasis on micro- and nanosystems, not covered in earlier references on applied thermal science, heat transfer or relevant aspects of mechanical/chemical engineering. Major sections address new developments in heat transfer, transport phenomena, single- and multiphase flows with energy transfer, thermal-bioengineering, thermal radiation, combined mode heat transfer, coupled heat and mass transfer, and energy systems. Energy transport at the macro-scale and micro/nano-scales is also included. The internationally recognized team of authors adopt a consistent and systematic approach and writing style, including ample cross reference among topics, offering readers a user-friendly knowledgebase greater than the sum of its parts, perfect for frequent consultation. The Handbook of Thermal Science and Engineering is ideal for academic and professional readers in the traditional and emerging areas of mechanical engineering, chemical engineering, aerospace engineering, bioengineering, electronics fabrication, energy, and manufacturing concerned with the influence thermal phenomena.

Multiscale Mechanistic Approach to Enhance Pool Boiling Performance for High Heat Flux Applications

Multiscale Mechanistic Approach to Enhance Pool Boiling Performance for High Heat Flux Applications PDF Author: Arvind Jaikumar
Publisher:
ISBN:
Category : Ebullition
Languages : en
Pages : 218

Book Description
"The advent of cloud computing and the complex packaging architecture of next generation electronic devices drives methods for advanced thermal management solutions. Convection based single-phase cooling systems are inefficient due to their large pressure drops, fluid temperature differences and costs, and are incapable of meeting the cooling requirements in the high power density components and systems. Alternatively, phase-change cooling techniques are attractive due to their ability to remove large amounts of heat while maintaining uniform fluid temperatures. Pool boiling heat transfer mechanism centers on the nucleation, growth and departure of a bubble from the heat transfer surface in a stagnant pool of liquid. The pool boiling performance is quantified by the Critical Heat Flux (CHF) and Heat Transfer Coefficients (HTC) which dictate the operating ranges and efficiency of the heat transfer process. In this work, three novel geometries are introduced to modify the nucleation characteristics, liquid pathways and contact line motion on the prime heater surface for a simultaneous increase in CHF and HTC. First, sintered microchannels and nucleating region with feeder channels (NRFC) were developed through the mechanistic concept of separate liquid-vapor pathways and enhanced macroconvection heat transfer. A maximum CHF of 420 W/cm2 at a wall superheat of 1.7 °C with a HTC of 2900 MW/m2°C was achieved with the sintered-channels configuration, while the NRFC reached a CHF of 394 W/cm2 with a HTC of 713 kW/m2°C. Second, the scale effect of liquid wettability, roughness and microlayer evaporation was exploited to facilitate capillary wicking in graphene through interlaced porous copper particles. A CHF of 220 W/cm2 with a HTC of 155 kW/m2°C was achieved using an electrodeposition coating technique. Third, the chemical heterogeneity on nanoscale coatings was shown to increase the contribution from transient conduction mechanisms. A maximum CHF of 226 W/cm2 with a HTC of 107 kW/m2°C was achieved. The enhancement techniques developed here provide a mechanistic tool at the microscale and nanoscale to increase the boiling CHF and HTC."--Abstract.

Electronics Cooling

Electronics Cooling PDF Author: S. M. Sohel Murshed
Publisher: BoD – Books on Demand
ISBN: 9535124056
Category : Computers
Languages : en
Pages : 184

Book Description
Featuring contributions from the renowned researchers and academicians in the field, this book covers key conventional and emerging cooling techniques and coolants for electronics cooling. It includes following thematic topics: - Cooling approaches and coolants - Boiling and phase change-based technologies - Heat pipes-based cooling - Microchannels cooling systems - Heat loop cooling technology - Nanofluids as coolants - Theoretical development for the junction temperature of package chips. This book is intended to be a reference source and guide to researchers, engineers, postgraduate students, and academicians in the fields of thermal management and cooling technologies as well as for people in the electronics and semiconductors industries.

Recent Advances in Mechanical Engineering

Recent Advances in Mechanical Engineering PDF Author: K.M. Pandey
Publisher: Springer Nature
ISBN: 9811577110
Category : Technology & Engineering
Languages : en
Pages : 949

Book Description
This book presents the select proceedings of the International Conference on Recent Advancements in Mechanical Engineering (ICRAME 2020). It provides a comprehensive overview of the various technical challenges faced, their systematic investigation, contemporary developments, and future perspectives in the domain of mechanical engineering. The book covers a wide array of topics including fluid flow techniques, compressible flows, waste management and waste disposal, bio-fuels, renewable energy, cryogenic applications, computing in applied mechanics, product design, dynamics and control of structures, fracture and failure mechanics, solid mechanics, finite element analysis, tribology, nano-mechanics and MEMS, robotics, supply chain management and logistics, intelligent manufacturing system, rapid prototyping and reverse engineering, quality control and reliability, conventional and non-conventional machining, and ergonomics. This book can be useful for students and researchers interested in mechanical engineering and its allied fields.