Author: Edward B. Magrab
Publisher: CRC Press
ISBN: 1000034526
Category : Mathematics
Languages : en
Pages : 453
Book Description
Advanced Engineering Mathematics with Mathematica® presents advanced analytical solution methods that are used to solve boundary-value problems in engineering and integrates these methods with Mathematica® procedures. It emphasizes the Sturm–Liouville system and the generation and application of orthogonal functions, which are used by the separation of variables method to solve partial differential equations. It introduces the relevant aspects of complex variables, matrices and determinants, Fourier series and transforms, solution techniques for ordinary differential equations, the Laplace transform, and procedures to make ordinary and partial differential equations used in engineering non-dimensional. To show the diverse applications of the material, numerous and widely varied solved boundary value problems are presented.
Advanced Engineering Mathematics with Mathematica
Author: Edward B. Magrab
Publisher: CRC Press
ISBN: 1000034526
Category : Mathematics
Languages : en
Pages : 453
Book Description
Advanced Engineering Mathematics with Mathematica® presents advanced analytical solution methods that are used to solve boundary-value problems in engineering and integrates these methods with Mathematica® procedures. It emphasizes the Sturm–Liouville system and the generation and application of orthogonal functions, which are used by the separation of variables method to solve partial differential equations. It introduces the relevant aspects of complex variables, matrices and determinants, Fourier series and transforms, solution techniques for ordinary differential equations, the Laplace transform, and procedures to make ordinary and partial differential equations used in engineering non-dimensional. To show the diverse applications of the material, numerous and widely varied solved boundary value problems are presented.
Publisher: CRC Press
ISBN: 1000034526
Category : Mathematics
Languages : en
Pages : 453
Book Description
Advanced Engineering Mathematics with Mathematica® presents advanced analytical solution methods that are used to solve boundary-value problems in engineering and integrates these methods with Mathematica® procedures. It emphasizes the Sturm–Liouville system and the generation and application of orthogonal functions, which are used by the separation of variables method to solve partial differential equations. It introduces the relevant aspects of complex variables, matrices and determinants, Fourier series and transforms, solution techniques for ordinary differential equations, the Laplace transform, and procedures to make ordinary and partial differential equations used in engineering non-dimensional. To show the diverse applications of the material, numerous and widely varied solved boundary value problems are presented.
Engineering Mathematics with Mathematica
Author: John S. Robertson
Publisher: McGraw-Hill Science, Engineering & Mathematics
ISBN:
Category : Computers
Languages : en
Pages : 306
Book Description
This supplementary text for applied mathematics courses where Mathematica is used in a laboratory setting, is intended to be compatible with a broad range of engineering mathematics texts, as well as smaller, more specialized texts in differential equations and complex variables. It covers topics found in courses on ordinary and partial differential equations, vector analysis, and applied complex analysis. Students are guided through a series of laboratory exercises that present cogent applications of the mathematics and demonstrate the use of Mathematica as a computational tool to do the mathematics. Relevant applications along with discussions of the results obtained combine to stimulate innovative thinking from the students about additional concepts and applications.
Publisher: McGraw-Hill Science, Engineering & Mathematics
ISBN:
Category : Computers
Languages : en
Pages : 306
Book Description
This supplementary text for applied mathematics courses where Mathematica is used in a laboratory setting, is intended to be compatible with a broad range of engineering mathematics texts, as well as smaller, more specialized texts in differential equations and complex variables. It covers topics found in courses on ordinary and partial differential equations, vector analysis, and applied complex analysis. Students are guided through a series of laboratory exercises that present cogent applications of the mathematics and demonstrate the use of Mathematica as a computational tool to do the mathematics. Relevant applications along with discussions of the results obtained combine to stimulate innovative thinking from the students about additional concepts and applications.
Advanced Engineering Mathematics with Mathematica and MATLAB
Author: Reza Malek-Madani
Publisher: Addison Wesley
ISBN:
Category : Computers
Languages : en
Pages : 612
Book Description
See previous listing for contents.
Publisher: Addison Wesley
ISBN:
Category : Computers
Languages : en
Pages : 612
Book Description
See previous listing for contents.
An Engineer's Guide to Mathematica
Author: Edward B. Magrab
Publisher: John Wiley & Sons
ISBN: 9781118821268
Category : Technology & Engineering
Languages : en
Pages : 0
Book Description
Free Mathematica 10 Update Included! Now available from www.wiley.com/go/magrab Updated material includes: - Creating regions and volumes of arbitrary shape and determining their properties: arc length, area, centroid, and area moment of inertia - Performing integrations, solving equations, and determining the maximum and minimum values over regions of arbitrary shape - Solving numerically a class of linear second order partial differential equations in regions of arbitrary shape using finite elements An Engineer's Guide to Mathematica enables the reader to attain the skills to create Mathematica 9 programs that solve a wide range of engineering problems and that display the results with annotated graphics. This book can be used to learn Mathematica, as a companion to engineering texts, and also as a reference for obtaining numerical and symbolic solutions to a wide range of engineering topics. The material is presented in an engineering context and the creation of interactive graphics is emphasized. The first part of the book introduces Mathematica's syntax and commands useful in solving engineering problems. Tables are used extensively to illustrate families of commands and the effects that different options have on their output. From these tables, one can easily determine which options will satisfy one's current needs. The order of the material is introduced so that the engineering applicability of the examples increases as one progresses through the chapters. The second part of the book obtains solutions to representative classes of problems in a wide range of engineering specialties. Here, the majority of the solutions are presented as interactive graphics so that the results can be explored parametrically. Key features: Material is based on Mathematica 9 Presents over 85 examples on a wide range of engineering topics, including vibrations, controls, fluids, heat transfer, structures, statistics, engineering mathematics, and optimization Each chapter contains a summary table of the Mathematica commands used for ease of reference Includes a table of applications summarizing all of the engineering examples presented. Accompanied by a website containing Mathematica notebooks of all the numbered examples An Engineer's Guide to Mathematica is a must-have reference for practitioners, and graduate and undergraduate students who want to learn how to solve engineering problems with Mathematica.
Publisher: John Wiley & Sons
ISBN: 9781118821268
Category : Technology & Engineering
Languages : en
Pages : 0
Book Description
Free Mathematica 10 Update Included! Now available from www.wiley.com/go/magrab Updated material includes: - Creating regions and volumes of arbitrary shape and determining their properties: arc length, area, centroid, and area moment of inertia - Performing integrations, solving equations, and determining the maximum and minimum values over regions of arbitrary shape - Solving numerically a class of linear second order partial differential equations in regions of arbitrary shape using finite elements An Engineer's Guide to Mathematica enables the reader to attain the skills to create Mathematica 9 programs that solve a wide range of engineering problems and that display the results with annotated graphics. This book can be used to learn Mathematica, as a companion to engineering texts, and also as a reference for obtaining numerical and symbolic solutions to a wide range of engineering topics. The material is presented in an engineering context and the creation of interactive graphics is emphasized. The first part of the book introduces Mathematica's syntax and commands useful in solving engineering problems. Tables are used extensively to illustrate families of commands and the effects that different options have on their output. From these tables, one can easily determine which options will satisfy one's current needs. The order of the material is introduced so that the engineering applicability of the examples increases as one progresses through the chapters. The second part of the book obtains solutions to representative classes of problems in a wide range of engineering specialties. Here, the majority of the solutions are presented as interactive graphics so that the results can be explored parametrically. Key features: Material is based on Mathematica 9 Presents over 85 examples on a wide range of engineering topics, including vibrations, controls, fluids, heat transfer, structures, statistics, engineering mathematics, and optimization Each chapter contains a summary table of the Mathematica commands used for ease of reference Includes a table of applications summarizing all of the engineering examples presented. Accompanied by a website containing Mathematica notebooks of all the numbered examples An Engineer's Guide to Mathematica is a must-have reference for practitioners, and graduate and undergraduate students who want to learn how to solve engineering problems with Mathematica.
Mathematics for Physical Science and Engineering
Author: Frank E. Harris
Publisher: Academic Press
ISBN: 0128010495
Category : Mathematics
Languages : en
Pages : 787
Book Description
Mathematics for Physical Science and Engineering is a complete text in mathematics for physical science that includes the use of symbolic computation to illustrate the mathematical concepts and enable the solution of a broader range of practical problems. This book enables professionals to connect their knowledge of mathematics to either or both of the symbolic languages Maple and Mathematica. The book begins by introducing the reader to symbolic computation and how it can be applied to solve a broad range of practical problems. Chapters cover topics that include: infinite series; complex numbers and functions; vectors and matrices; vector analysis; tensor analysis; ordinary differential equations; general vector spaces; Fourier series; partial differential equations; complex variable theory; and probability and statistics. Each important concept is clarified to students through the use of a simple example and often an illustration. This book is an ideal reference for upper level undergraduates in physical chemistry, physics, engineering, and advanced/applied mathematics courses. It will also appeal to graduate physicists, engineers and related specialties seeking to address practical problems in physical science. - Clarifies each important concept to students through the use of a simple example and often an illustration - Provides quick-reference for students through multiple appendices, including an overview of terms in most commonly used applications (Mathematica, Maple) - Shows how symbolic computing enables solving a broad range of practical problems
Publisher: Academic Press
ISBN: 0128010495
Category : Mathematics
Languages : en
Pages : 787
Book Description
Mathematics for Physical Science and Engineering is a complete text in mathematics for physical science that includes the use of symbolic computation to illustrate the mathematical concepts and enable the solution of a broader range of practical problems. This book enables professionals to connect their knowledge of mathematics to either or both of the symbolic languages Maple and Mathematica. The book begins by introducing the reader to symbolic computation and how it can be applied to solve a broad range of practical problems. Chapters cover topics that include: infinite series; complex numbers and functions; vectors and matrices; vector analysis; tensor analysis; ordinary differential equations; general vector spaces; Fourier series; partial differential equations; complex variable theory; and probability and statistics. Each important concept is clarified to students through the use of a simple example and often an illustration. This book is an ideal reference for upper level undergraduates in physical chemistry, physics, engineering, and advanced/applied mathematics courses. It will also appeal to graduate physicists, engineers and related specialties seeking to address practical problems in physical science. - Clarifies each important concept to students through the use of a simple example and often an illustration - Provides quick-reference for students through multiple appendices, including an overview of terms in most commonly used applications (Mathematica, Maple) - Shows how symbolic computing enables solving a broad range of practical problems
Mathematica Computer Manual to Accompany Advanced Engineering Mathematics, 8th Edition
Author: Erwin Kreyszig
Publisher: John Wiley & Sons
ISBN:
Category : Mathematics
Languages : en
Pages : 346
Book Description
Aimed at the junior level courses in maths and engineering departments, this edition of the well known text covers many areas such as differential equations, linear algebra, complex analysis, numerical methods, probability, and more.
Publisher: John Wiley & Sons
ISBN:
Category : Mathematics
Languages : en
Pages : 346
Book Description
Aimed at the junior level courses in maths and engineering departments, this edition of the well known text covers many areas such as differential equations, linear algebra, complex analysis, numerical methods, probability, and more.
Applied Engineering Mathematics
Author: Brian Vick
Publisher: CRC Press
ISBN: 1000047652
Category : Mathematics
Languages : en
Pages : 227
Book Description
Undergraduate engineering students need good mathematics skills. This textbook supports this need by placing a strong emphasis on visualization and the methods and tools needed across the whole of engineering. The visual approach is emphasized, and excessive proofs and derivations are avoided. The visual images explain and teach the mathematical methods. The book’s website provides dynamic and interactive codes in Mathematica to accompany the examples for the reader to explore on their own with Mathematica or the free Computational Document Format player, and it provides access for instructors to a solutions manual. Strongly emphasizes a visual approach to engineering mathematics Written for years 2 to 4 of an engineering degree course Website offers support with dynamic and interactive Mathematica code and instructor’s solutions manual Brian Vick is an associate professor at Virginia Tech in the United States and is a longtime teacher and researcher. His style has been developed from teaching a variety of engineering and mathematical courses in the areas of heat transfer, thermodynamics, engineering design, computer programming, numerical analysis, and system dynamics at both undergraduate and graduate levels. eResource material is available for this title at www.crcpress.com/9780367432768.
Publisher: CRC Press
ISBN: 1000047652
Category : Mathematics
Languages : en
Pages : 227
Book Description
Undergraduate engineering students need good mathematics skills. This textbook supports this need by placing a strong emphasis on visualization and the methods and tools needed across the whole of engineering. The visual approach is emphasized, and excessive proofs and derivations are avoided. The visual images explain and teach the mathematical methods. The book’s website provides dynamic and interactive codes in Mathematica to accompany the examples for the reader to explore on their own with Mathematica or the free Computational Document Format player, and it provides access for instructors to a solutions manual. Strongly emphasizes a visual approach to engineering mathematics Written for years 2 to 4 of an engineering degree course Website offers support with dynamic and interactive Mathematica code and instructor’s solutions manual Brian Vick is an associate professor at Virginia Tech in the United States and is a longtime teacher and researcher. His style has been developed from teaching a variety of engineering and mathematical courses in the areas of heat transfer, thermodynamics, engineering design, computer programming, numerical analysis, and system dynamics at both undergraduate and graduate levels. eResource material is available for this title at www.crcpress.com/9780367432768.
Classical Mechanics with Mathematica®
Author: Antonio Romano
Publisher: Springer
ISBN: 3319775952
Category : Science
Languages : en
Pages : 644
Book Description
This textbook takes a broad yet thorough approach to mechanics, aimed at bridging the gap between classical analytic and modern differential geometric approaches to the subject. Developed by the authors from over 30 years of teaching experience, the presentation is designed to give students an overview of the many different models used through the history of the field—from Newton to Hamilton—while also painting a clear picture of the most modern developments. The text is organized into two parts. The first focuses on developing the mathematical framework of linear algebra and differential geometry necessary for the remainder of the book. Topics covered include tensor algebra, Euclidean and symplectic vector spaces, differential manifolds, and absolute differential calculus. The second part of the book applies these topics to kinematics, rigid body dynamics, Lagrangian and Hamiltonian dynamics, Hamilton–Jacobi theory, completely integrable systems, statistical mechanics of equilibrium, and impulsive dynamics, among others. This new edition has been completely revised and updated and now includes almost 200 exercises, as well as new chapters on celestial mechanics, one-dimensional continuous systems, and variational calculus with applications. Several Mathematica® notebooks are available to download that will further aid students in their understanding of some of the more difficult material. Unique in its scope of coverage and method of approach, Classical Mechanics with Mathematica® will be useful resource for graduate students and advanced undergraduates in applied mathematics and physics who hope to gain a deeper understanding of mechanics.
Publisher: Springer
ISBN: 3319775952
Category : Science
Languages : en
Pages : 644
Book Description
This textbook takes a broad yet thorough approach to mechanics, aimed at bridging the gap between classical analytic and modern differential geometric approaches to the subject. Developed by the authors from over 30 years of teaching experience, the presentation is designed to give students an overview of the many different models used through the history of the field—from Newton to Hamilton—while also painting a clear picture of the most modern developments. The text is organized into two parts. The first focuses on developing the mathematical framework of linear algebra and differential geometry necessary for the remainder of the book. Topics covered include tensor algebra, Euclidean and symplectic vector spaces, differential manifolds, and absolute differential calculus. The second part of the book applies these topics to kinematics, rigid body dynamics, Lagrangian and Hamiltonian dynamics, Hamilton–Jacobi theory, completely integrable systems, statistical mechanics of equilibrium, and impulsive dynamics, among others. This new edition has been completely revised and updated and now includes almost 200 exercises, as well as new chapters on celestial mechanics, one-dimensional continuous systems, and variational calculus with applications. Several Mathematica® notebooks are available to download that will further aid students in their understanding of some of the more difficult material. Unique in its scope of coverage and method of approach, Classical Mechanics with Mathematica® will be useful resource for graduate students and advanced undergraduates in applied mathematics and physics who hope to gain a deeper understanding of mechanics.
Structural Dynamics of Earthquake Engineering
Author: S Rajasekaran
Publisher: Elsevier
ISBN: 1845695739
Category : Technology & Engineering
Languages : en
Pages : 909
Book Description
Given the risk of earthquakes in many countries, knowing how structural dynamics can be applied to earthquake engineering of structures, both in theory and practice, is a vital aspect of improving the safety of buildings and structures. It can also reduce the number of deaths and injuries and the amount of property damage.The book begins by discussing free vibration of single-degree-of-freedom (SDOF) systems, both damped and undamped, and forced vibration (harmonic force) of SDOF systems. Response to periodic dynamic loadings and impulse loads are also discussed, as are two degrees of freedom linear system response methods and free vibration of multiple degrees of freedom. Further chapters cover time history response by natural mode superposition, numerical solution methods for natural frequencies and mode shapes and differential quadrature, transformation and Finite Element methods for vibration problems. Other topics such as earthquake ground motion, response spectra and earthquake analysis of linear systems are discussed.Structural dynamics of earthquake engineering: theory and application using Mathematica and Matlab provides civil and structural engineers and students with an understanding of the dynamic response of structures to earthquakes and the common analysis techniques employed to evaluate these responses. Worked examples in Mathematica and Matlab are given. - Explains the dynamic response of structures to earthquakes including periodic dynamic loadings and impulse loads - Examines common analysis techniques such as natural mode superposition, the finite element method and numerical solutions - Investigates this important topic in terms of both theory and practise with the inclusion of practical exercise and diagrams
Publisher: Elsevier
ISBN: 1845695739
Category : Technology & Engineering
Languages : en
Pages : 909
Book Description
Given the risk of earthquakes in many countries, knowing how structural dynamics can be applied to earthquake engineering of structures, both in theory and practice, is a vital aspect of improving the safety of buildings and structures. It can also reduce the number of deaths and injuries and the amount of property damage.The book begins by discussing free vibration of single-degree-of-freedom (SDOF) systems, both damped and undamped, and forced vibration (harmonic force) of SDOF systems. Response to periodic dynamic loadings and impulse loads are also discussed, as are two degrees of freedom linear system response methods and free vibration of multiple degrees of freedom. Further chapters cover time history response by natural mode superposition, numerical solution methods for natural frequencies and mode shapes and differential quadrature, transformation and Finite Element methods for vibration problems. Other topics such as earthquake ground motion, response spectra and earthquake analysis of linear systems are discussed.Structural dynamics of earthquake engineering: theory and application using Mathematica and Matlab provides civil and structural engineers and students with an understanding of the dynamic response of structures to earthquakes and the common analysis techniques employed to evaluate these responses. Worked examples in Mathematica and Matlab are given. - Explains the dynamic response of structures to earthquakes including periodic dynamic loadings and impulse loads - Examines common analysis techniques such as natural mode superposition, the finite element method and numerical solutions - Investigates this important topic in terms of both theory and practise with the inclusion of practical exercise and diagrams
Scientific Computing with Mathematica®
Author: Addolorata Marasco
Publisher: Springer Science & Business Media
ISBN: 1461201519
Category : Mathematics
Languages : en
Pages : 278
Book Description
Many interesting behaviors of real physical, biological, economical, and chemical systems can be described by ordinary differential equations (ODEs). Scientific Computing with Mathematica for Ordinary Differential Equations provides a general framework useful for the applications, on the conceptual aspects of the theory of ODEs, as well as a sophisticated use of Mathematica software for the solutions of problems related to ODEs. In particular, a chapter is devoted to the use ODEs and Mathematica in the Dynamics of rigid bodies. Mathematical methods and scientific computation are dealt with jointly to supply a unified presentation. The main problems of ordinary differential equations such as, phase portrait, approximate solutions, periodic orbits, stability, bifurcation, and boundary problems are covered in an integrated fashion with numerous worked examples and computer program demonstrations using Mathematica. Topics and Features:*Explains how to use the Mathematica package ODE.m to support qualitative and quantitative problem solving *End-of- chapter exercise sets incorporating the use of Mathematica programs *Detailed description and explanation of the mathematical procedures underlying the programs written in Mathematica *Appendix describing the use of ten notebooks to guide the reader through all the exercises. This book is an essential text/reference for students, graduates and practitioners in applied mathematics and engineering interested in ODE's problems in both the qualitative and quantitative description of solutions with the Mathematica program. It is also suitable as a self-
Publisher: Springer Science & Business Media
ISBN: 1461201519
Category : Mathematics
Languages : en
Pages : 278
Book Description
Many interesting behaviors of real physical, biological, economical, and chemical systems can be described by ordinary differential equations (ODEs). Scientific Computing with Mathematica for Ordinary Differential Equations provides a general framework useful for the applications, on the conceptual aspects of the theory of ODEs, as well as a sophisticated use of Mathematica software for the solutions of problems related to ODEs. In particular, a chapter is devoted to the use ODEs and Mathematica in the Dynamics of rigid bodies. Mathematical methods and scientific computation are dealt with jointly to supply a unified presentation. The main problems of ordinary differential equations such as, phase portrait, approximate solutions, periodic orbits, stability, bifurcation, and boundary problems are covered in an integrated fashion with numerous worked examples and computer program demonstrations using Mathematica. Topics and Features:*Explains how to use the Mathematica package ODE.m to support qualitative and quantitative problem solving *End-of- chapter exercise sets incorporating the use of Mathematica programs *Detailed description and explanation of the mathematical procedures underlying the programs written in Mathematica *Appendix describing the use of ten notebooks to guide the reader through all the exercises. This book is an essential text/reference for students, graduates and practitioners in applied mathematics and engineering interested in ODE's problems in both the qualitative and quantitative description of solutions with the Mathematica program. It is also suitable as a self-