Author: Robert Sroufe
Publisher: Island Press
ISBN: 164283050X
Category : Architecture
Languages : en
Pages : 234
Book Description
Your building has the potential to change the world. Existing buildings consume approximately 40 percent of the energy and emit nearly half of the carbon dioxide in the US each year. In recognition of the significant contribution of buildings to climate change, the idea of building green has become increasingly popular. But is it enough? If an energy-efficient building is new construction, it may take 10 to 80 years to overcome the climate change impacts of the building process. New buildings are sexy, but few realize the value in existing buildings and how easy it is to get to “zero energy” or low-energy consumption through deep energy retrofits. Existing buildings can and should be retrofit to reduce environmental impacts that contribute to climate change, while improving human health and productivity for building occupants. In The Power of Existing Buildings, academic sustainability expert Robert Sroufe, and construction and building experts Craig Stevenson and Beth Eckenrode, explain how to realize the potential of existing buildings and make them perform like new. This step-by-step guide will help readers to: understand where to start a project; develop financial models and realize costs savings; assemble an expert team; and align goals with numerous sustainability programs. The Power of Existing Buildings will challenge you to rethink spaces where people work and play, while determining how existing buildings can save the world. The insights and practical experience of Sroufe, Stevenson, and Eckenrode, along with the project case study examples, provide new insights on investing in existing buildings for building owners, engineers, occupants, architects, and real estate and construction professionals. The Power of Existing Buildings helps decision-makers move beyond incremental changes to holistic, results-oriented solutions.
The Power of Existing Buildings
Author: Robert Sroufe
Publisher: Island Press
ISBN: 164283050X
Category : Architecture
Languages : en
Pages : 234
Book Description
Your building has the potential to change the world. Existing buildings consume approximately 40 percent of the energy and emit nearly half of the carbon dioxide in the US each year. In recognition of the significant contribution of buildings to climate change, the idea of building green has become increasingly popular. But is it enough? If an energy-efficient building is new construction, it may take 10 to 80 years to overcome the climate change impacts of the building process. New buildings are sexy, but few realize the value in existing buildings and how easy it is to get to “zero energy” or low-energy consumption through deep energy retrofits. Existing buildings can and should be retrofit to reduce environmental impacts that contribute to climate change, while improving human health and productivity for building occupants. In The Power of Existing Buildings, academic sustainability expert Robert Sroufe, and construction and building experts Craig Stevenson and Beth Eckenrode, explain how to realize the potential of existing buildings and make them perform like new. This step-by-step guide will help readers to: understand where to start a project; develop financial models and realize costs savings; assemble an expert team; and align goals with numerous sustainability programs. The Power of Existing Buildings will challenge you to rethink spaces where people work and play, while determining how existing buildings can save the world. The insights and practical experience of Sroufe, Stevenson, and Eckenrode, along with the project case study examples, provide new insights on investing in existing buildings for building owners, engineers, occupants, architects, and real estate and construction professionals. The Power of Existing Buildings helps decision-makers move beyond incremental changes to holistic, results-oriented solutions.
Publisher: Island Press
ISBN: 164283050X
Category : Architecture
Languages : en
Pages : 234
Book Description
Your building has the potential to change the world. Existing buildings consume approximately 40 percent of the energy and emit nearly half of the carbon dioxide in the US each year. In recognition of the significant contribution of buildings to climate change, the idea of building green has become increasingly popular. But is it enough? If an energy-efficient building is new construction, it may take 10 to 80 years to overcome the climate change impacts of the building process. New buildings are sexy, but few realize the value in existing buildings and how easy it is to get to “zero energy” or low-energy consumption through deep energy retrofits. Existing buildings can and should be retrofit to reduce environmental impacts that contribute to climate change, while improving human health and productivity for building occupants. In The Power of Existing Buildings, academic sustainability expert Robert Sroufe, and construction and building experts Craig Stevenson and Beth Eckenrode, explain how to realize the potential of existing buildings and make them perform like new. This step-by-step guide will help readers to: understand where to start a project; develop financial models and realize costs savings; assemble an expert team; and align goals with numerous sustainability programs. The Power of Existing Buildings will challenge you to rethink spaces where people work and play, while determining how existing buildings can save the world. The insights and practical experience of Sroufe, Stevenson, and Eckenrode, along with the project case study examples, provide new insights on investing in existing buildings for building owners, engineers, occupants, architects, and real estate and construction professionals. The Power of Existing Buildings helps decision-makers move beyond incremental changes to holistic, results-oriented solutions.
Emerging Research in Sustainable Energy and Buildings for a Low-Carbon Future
Author: Robert J. Howlett
Publisher: Springer Nature
ISBN: 9811587752
Category : Architecture
Languages : en
Pages : 360
Book Description
This book contains an introduction and 20 studies, each describing a recent research investigation in the area of sustainable and resilient buildings, built environment infrastructure and renewable energy. Contributions are from many different countries of the world and on a range of topics, representing a sample of research within the ‘sustainable energy and buildings’ field. The book begins with chapters on the sustainable design of buildings, followed by descriptions of issues relating to the renovation, restoration and reconstruction of existing buildings, or in one case a railway wagon. The next part of the book covers factors that form barriers or impediments to low or zero carbon buildings, followed by studies of issues relating to policy and certification. There then follow four chapters on various topics related to sustainable buildings – undergraduate courses, insurance issues, biophilia relating to buildings and thermal conductivity measurement. There are several chapters relating to renewable energy, followed by two chapters with a sustainable transport theme, one relating to electric vehicles, and the other about a sustainable road infrastructure. The final chapter is on the manufacture of sustainable building components for the UK housing sector. The book is of use to engineers, scientists, researchers, practitioners, academics and all those who are interested to develop and use sustainability science and technology for the betterment of our planet and humankind, and to mitigate climate change reality.
Publisher: Springer Nature
ISBN: 9811587752
Category : Architecture
Languages : en
Pages : 360
Book Description
This book contains an introduction and 20 studies, each describing a recent research investigation in the area of sustainable and resilient buildings, built environment infrastructure and renewable energy. Contributions are from many different countries of the world and on a range of topics, representing a sample of research within the ‘sustainable energy and buildings’ field. The book begins with chapters on the sustainable design of buildings, followed by descriptions of issues relating to the renovation, restoration and reconstruction of existing buildings, or in one case a railway wagon. The next part of the book covers factors that form barriers or impediments to low or zero carbon buildings, followed by studies of issues relating to policy and certification. There then follow four chapters on various topics related to sustainable buildings – undergraduate courses, insurance issues, biophilia relating to buildings and thermal conductivity measurement. There are several chapters relating to renewable energy, followed by two chapters with a sustainable transport theme, one relating to electric vehicles, and the other about a sustainable road infrastructure. The final chapter is on the manufacture of sustainable building components for the UK housing sector. The book is of use to engineers, scientists, researchers, practitioners, academics and all those who are interested to develop and use sustainability science and technology for the betterment of our planet and humankind, and to mitigate climate change reality.
Energy and Seismic Renovation Strategies for Sustainable Cities
Author: Giuseppe Margani
Publisher: MDPI
ISBN: 3038979449
Category : Architecture
Languages : en
Pages : 252
Book Description
The principle of sustainability should be strictly connected with safety, since both aim to conserve resources: in the case of sustainability, the resources are typically thought of as environmental, while in the case of safety, the resources are basically human. In spite of this common ground, discussions on sustainability usually give insufficient attention to safety. In the last years the EU has made large investments to increase the energy efficiency of the existing building stock, paving the way for a low-carbon future; however, less effort has been made to enhance its seismic resilience. Therefore, the safety and, consequently, the sustainability of towns situated in earthquake-prone countries remain inadequate. In such countries, energy renovation actions should be combined with seismic retrofitting. However, a number of barriers considerably limit the real possibility of extensively undertaking combined retrofit actions, especially for multi-owner housing and high-rise buildings. These barriers are of different kinds: technical (e.g., unfeasibility and/or ineffectiveness of conventional retrofit solutions), financial (e.g., high renovation costs, insufficient incentives/subsidies), organizational (e.g., occupants’ disruption and relocation, renovation consensus by condominium ownerships), and cultural/social (insufficient information and skills, lack of adequate policy measures for promoting renovation actions). This book aims to overcome these barriers and to bridge the gap between sustainability and safety, so to conserve both human and environmental resources.
Publisher: MDPI
ISBN: 3038979449
Category : Architecture
Languages : en
Pages : 252
Book Description
The principle of sustainability should be strictly connected with safety, since both aim to conserve resources: in the case of sustainability, the resources are typically thought of as environmental, while in the case of safety, the resources are basically human. In spite of this common ground, discussions on sustainability usually give insufficient attention to safety. In the last years the EU has made large investments to increase the energy efficiency of the existing building stock, paving the way for a low-carbon future; however, less effort has been made to enhance its seismic resilience. Therefore, the safety and, consequently, the sustainability of towns situated in earthquake-prone countries remain inadequate. In such countries, energy renovation actions should be combined with seismic retrofitting. However, a number of barriers considerably limit the real possibility of extensively undertaking combined retrofit actions, especially for multi-owner housing and high-rise buildings. These barriers are of different kinds: technical (e.g., unfeasibility and/or ineffectiveness of conventional retrofit solutions), financial (e.g., high renovation costs, insufficient incentives/subsidies), organizational (e.g., occupants’ disruption and relocation, renovation consensus by condominium ownerships), and cultural/social (insufficient information and skills, lack of adequate policy measures for promoting renovation actions). This book aims to overcome these barriers and to bridge the gap between sustainability and safety, so to conserve both human and environmental resources.
Energy and Technical Building Systems - Scientific and Technological Advances
Author: Jarek Kurnitski
Publisher: MDPI
ISBN: 303928178X
Category : Technology & Engineering
Languages : en
Pages : 220
Book Description
Future buildings require not only energy efficiency but also proper building automation and control system functionalities in order to respond to the needs of occupants and energy grids. These development paths require a focus on occupant needs such as good indoor climate, easy operability, and monitoring. Another area to be tackled is energy flexibility, which is needed to make buildings responsive to the price signals of electricity grids with increasing amounts of fluctuating renewable energy generation installed both in central grids and at building sites. This Special Issue is dedicated to HVAC systems, load shifting, indoor climate, and energy and ventilation performance analyses in buildings. All these topics are important for improving the energy performance of new and renovated buildings within the roadmap of low energy and nearly zero energy buildings. To improve energy performance and, at the same time, occupant comfort and wellbeing, new technical solutions are required. Occupancy patterns and recognition, intelligent building management, demand response and performance of heating, cooling and ventilation systems are some common keywords in the articles of this Special Issue contributing to future highly performing buildings with reliable operation.
Publisher: MDPI
ISBN: 303928178X
Category : Technology & Engineering
Languages : en
Pages : 220
Book Description
Future buildings require not only energy efficiency but also proper building automation and control system functionalities in order to respond to the needs of occupants and energy grids. These development paths require a focus on occupant needs such as good indoor climate, easy operability, and monitoring. Another area to be tackled is energy flexibility, which is needed to make buildings responsive to the price signals of electricity grids with increasing amounts of fluctuating renewable energy generation installed both in central grids and at building sites. This Special Issue is dedicated to HVAC systems, load shifting, indoor climate, and energy and ventilation performance analyses in buildings. All these topics are important for improving the energy performance of new and renovated buildings within the roadmap of low energy and nearly zero energy buildings. To improve energy performance and, at the same time, occupant comfort and wellbeing, new technical solutions are required. Occupancy patterns and recognition, intelligent building management, demand response and performance of heating, cooling and ventilation systems are some common keywords in the articles of this Special Issue contributing to future highly performing buildings with reliable operation.
Solar Energy
Author: Andy Walker
Publisher: John Wiley & Sons
ISBN: 1118416546
Category : Architecture
Languages : en
Pages : 480
Book Description
Solar Energy is an authoritative reference on the design of solar energy systems in building projects, with applications, operating principles, and simple tools for the construction, engineering, and design professional. The book simplifies the solar design and engineering process, providing sample documentation and special tools that provide all the information needed for the complete design of a solar energy system for buildings to enable mainstream MEP and design firms, and not just solar energy specialists, to meet the growing demand for solar energy systems in building projects.
Publisher: John Wiley & Sons
ISBN: 1118416546
Category : Architecture
Languages : en
Pages : 480
Book Description
Solar Energy is an authoritative reference on the design of solar energy systems in building projects, with applications, operating principles, and simple tools for the construction, engineering, and design professional. The book simplifies the solar design and engineering process, providing sample documentation and special tools that provide all the information needed for the complete design of a solar energy system for buildings to enable mainstream MEP and design firms, and not just solar energy specialists, to meet the growing demand for solar energy systems in building projects.
Integrative Approach to Comprehensive Building Renovations
Author: Vesna Žegarac Leskovar
Publisher: Springer
ISBN: 3030114767
Category : Architecture
Languages : en
Pages : 164
Book Description
This book presents a new approach to building renovation, combining aspects of various professional disciplines, integrating green building design, structural stability, and energy efficiency. It draws attention to several often-overlooked qualities of buildings that should be comprehensively integrated into the context of building renovation. The book presents an overview of the most important renovation approaches according to their scope, intensity, and priorities. Combining basic theoretical knowledge and the authors’ scientific research it emphasizes the importance of simultaneous consideration of energy efficiency and structural stability in building renovation processes. It simultaneously analyses the effects of various renovation steps related to the required level of energy efficiency, while it also proposes the options of building extension with timber-glass upgrade modules as the solution to a shortage of usable floor areas occurring in large cities. This book offers building designers and decision makers a tool for predicting energy savings in building renovation processes and provides useful guidelines for architects, city developers and students studying architecture and civil engineering. Additionally, it demonstrates how specific innovations, e.g., building extensions with timber-glass modules, can assist building industry companies in the planning and development of their future production. The main aim of the current book is to expose various approaches to the renovation of existing buildings and to combine practical experience with existing research, in order to disseminate knowledge and raise awareness on the importance of integrative and interdisciplinary solutions.
Publisher: Springer
ISBN: 3030114767
Category : Architecture
Languages : en
Pages : 164
Book Description
This book presents a new approach to building renovation, combining aspects of various professional disciplines, integrating green building design, structural stability, and energy efficiency. It draws attention to several often-overlooked qualities of buildings that should be comprehensively integrated into the context of building renovation. The book presents an overview of the most important renovation approaches according to their scope, intensity, and priorities. Combining basic theoretical knowledge and the authors’ scientific research it emphasizes the importance of simultaneous consideration of energy efficiency and structural stability in building renovation processes. It simultaneously analyses the effects of various renovation steps related to the required level of energy efficiency, while it also proposes the options of building extension with timber-glass upgrade modules as the solution to a shortage of usable floor areas occurring in large cities. This book offers building designers and decision makers a tool for predicting energy savings in building renovation processes and provides useful guidelines for architects, city developers and students studying architecture and civil engineering. Additionally, it demonstrates how specific innovations, e.g., building extensions with timber-glass modules, can assist building industry companies in the planning and development of their future production. The main aim of the current book is to expose various approaches to the renovation of existing buildings and to combine practical experience with existing research, in order to disseminate knowledge and raise awareness on the importance of integrative and interdisciplinary solutions.
The Sustainable Renovation of Buildings and Neighbourhoods
Author: Pilar Mercader-Moyano
Publisher: Bentham Science Publishers
ISBN: 1681080648
Category : Architecture
Languages : en
Pages : 184
Book Description
The Sustainable Renovation of Buildings and Neighborhoods is a collection of papers presented at the International Congress of Sustainable Construction and Eco‐efficient Solutions. This event has established itself as a forum for meeting academics from around the word, researchers and professionals of the construction sector, in which environmental information is shared with a multidisciplinary context, and which involves participants from different areas of the construction process. The congress brings together development proposals through a shared vision of environmental sustainability and presents alternative solutions to problems through technical presentations and trainings, in order to minimize the environmental impact caused by the construction sector. This monograph celebrates the event’s second international edition and its fourth national edition. The volume contains selected articles written by the participants. Readers will find information about interesting, new developments and concepts on • Energy retrofitting in older buildings • Tools to determine and measure environmental impact and sustainability indicators • Economic / cost based revaluation of buildings through the viability of eco‐efficient solutions • Reduction of the consumption of material and energy resources and in CO2 emissions • Sustainability research based on the renovation of urban areas. The studies in this book provide real examples from different countries (Argentina and Spain, for example). The Sustainable Renovation of Buildings and Neighborhoods is a useful reference for researchers and professional architects involved in sustainable development, environmental rehabilitation and the construction industry.
Publisher: Bentham Science Publishers
ISBN: 1681080648
Category : Architecture
Languages : en
Pages : 184
Book Description
The Sustainable Renovation of Buildings and Neighborhoods is a collection of papers presented at the International Congress of Sustainable Construction and Eco‐efficient Solutions. This event has established itself as a forum for meeting academics from around the word, researchers and professionals of the construction sector, in which environmental information is shared with a multidisciplinary context, and which involves participants from different areas of the construction process. The congress brings together development proposals through a shared vision of environmental sustainability and presents alternative solutions to problems through technical presentations and trainings, in order to minimize the environmental impact caused by the construction sector. This monograph celebrates the event’s second international edition and its fourth national edition. The volume contains selected articles written by the participants. Readers will find information about interesting, new developments and concepts on • Energy retrofitting in older buildings • Tools to determine and measure environmental impact and sustainability indicators • Economic / cost based revaluation of buildings through the viability of eco‐efficient solutions • Reduction of the consumption of material and energy resources and in CO2 emissions • Sustainability research based on the renovation of urban areas. The studies in this book provide real examples from different countries (Argentina and Spain, for example). The Sustainable Renovation of Buildings and Neighborhoods is a useful reference for researchers and professional architects involved in sustainable development, environmental rehabilitation and the construction industry.
Energy renovation of multi-family buildings in Sweden
Author: Lina La Fleur
Publisher: Linköping University Electronic Press
ISBN: 9176850072
Category :
Languages : en
Pages : 101
Book Description
Residential buildings account for 27% of the final energy use in the European Union. In cold climates, space heating represents the largest proportion of the energy demand in residential buildings. By implementing energy efficiency measures (EEMs) in existing buildings, energy use can be significantly reduced. The Energy Performance of Buildings Directive states that renovations of buildings offer an opportunity to improve energy efficiency. Renovations that include measures implemented with the specific purpose of reducing energy use are referred to as energy renovations. In addition to improving energy efficiency, an energy renovation can also improve the indoor environment. Sweden, like many other European countries, faces the challenge of renovating an ageing building stock with poor energy performance. Improving energy efficiency and performing energy renovations in a cost-effective manner is central, and optimization approaches are often used to identify suitable EEMs and energy renovation approaches. New buildings usually feature better energy performance compared to older buildings, and one approach for reducing energy use in the building sector could be to demolish old buildings with poor thermal performance and build new buildings with better thermal performance. The aim of this thesis is to evaluate energy renovations of multi-family buildings with regard to space heating demand, life cycle costs, indoor environment and primary energy use. The choice between energy renovation of a multi-family building and the demolition and construction of a new one is also investigated with regard to life cycle costs (LCCs). A Swedish multi-family building in which energy renovation has been carried out is used as a case study. The building was originally constructed in 1961 and has a lightweight concrete construction. The renovation included improving the thermal performance of the building envelope and replacing the exhaust air ventilation system with a mechanical supply and exhaust air ventilation system with heat recovery. The methods used in the studies include dynamic whole building energy simulation, life cycle cost analysis and optimizations, and a questionnaire on indoor environment perception. Extensive field measurements have been performed in the building prior to and after renovation to provide input data and to validate numerical predictions. In addition to the studied building, the analysis of the choice between energy renovation and the demolition and construction of a new building includes three other building construction types, representing common Swedish building types from the 1940s, 1950s and 1970s. The analysis shows that the energy renovation led to a 44% reduction in space heating demand and an improved indoor environment. The indoor temperature was higher after the renovation and the perception of the indoor temperature, air quality and noise in the building improved. The EEMs implemented as part of the energy renovation have a slightly higher LCC than the optimal combinations of EEMs identified in the LCC optimization. It is not cost-optimal to implement any EEMs in the building if the lowest possible LCC is the objective function. Attic insulation has a low cost of implementation but has limited potential in the studied building with its relatively good thermal properties. Insulation of the façade is an expensive measure, but has a great potential to reduce heat demand because of the large façade area. Façade insulation is thus required to achieve significant energy savings. Heat recovery in the ventilation system is cost-effective with an energy saving target above 40% in the studied building. The primary energy factors in the Swedish Building Code favor ground source heat pumps as a heat supply system in the studied building. The LCC of renovation is lower compared to demolishing and constructing a new building. A large proportion of the LCC of demolition and new construction relates to the demolition of the existing building. In a building with a high internal volume to floor area ratio, it is not always possible to renovate to the same energy performance level as when constructing a new building. A more ambitious renovation approach is also needed compared to a building with a smaller volume to floor area ratio. Nära 27 % av den totala energianvändningen i den Europeiska Unionen sker i bostäder. I länder med kallt klimat används den största delen till uppvärmning. Genom att implementera energieffektiviseringsåtgärder i befintliga byggnaden kan energiprestandan signifikant förbättras. Europeiska Unionens direktiv om byggnaders energiprestanda framhåller att ett tillfälle att förbättra byggnaders energieffektivitet finns då byggnader ska renoveras. Byggnadsrenoveringar som innehåller åtgärder som implementeras med det primära syftet att minska energianvändningen kallas ofta energirenoveringar. Utöver energieffektivisering kan energirenoveringar ofta förbättra inomhusmiljön i byggnaden. Som många andra Europeiska länder står Sverige inför utmaningen att renovera ett åldrande byggnadsbestånd med låg energiprestanda. Kostnadseffektivitet är centralt vid energirenoveringar och energieffektivisering och optimeringsansatser är vanliga för att identifiera vilka energieffektiviseringsåtgärder som bör implementeras. Nya byggnader har som regel bättre energiprestanda jämfört med äldre byggnader, och en ansats till ett minska energianvändningen i byggnadssektorn överlag är således att riva äldre byggnader med låg energiprestanda och konstruera nya byggnader med bättre energiprestanda. Syftet med denna avhandling är att utvärdera energirenoveringar av flerfamiljshus avseende effekterna på uppvärmningsbehov, livscykelkostnader, inomhusmiljö och primärenergianvändning. Valet mellan energirenovering kontra att riva och bygga en ny byggnad analyseras också utifrån ett livscykelkostnadsperspektiv. För att studera detta har en svensk flerfamiljsbyggnad som genomgått energirenovering studerats. Byggnaden konstruerades 1961 och har en lättbetongstomme. När byggnaden renoverades förbättrades prestandan hos byggnadens klimatskal och frånluftsventilationssystemet byttes ut mot ett balanserat mekanisk ventilationssystem med värmeåtervinning. Metoderna som använts i studierna i denna avhandling är dynamisk byggandssimulering, beräkning och optimering av livscykelkostnader, samt en enkätstudie om hur de boende uppfattar sin inomhusmiljö. Omfattande mätningar har utförts i byggnaden och har använts som indata och för att validera resultaten. Utöver den studerade byggnaden har tre andra byggnadstyper inkluderats i analysen av valet mellan energirenovering och att riva och konstruera en ny byggnads. Dessa byggnadstyper representerar vanliga svenska byggnadstyper från 1940-, 1950- och 1970-talet. Analyserna visar att den renovering som genomfördes i byggnaden ledde till en minskning av uppvärmningsbehovet med 44 % och en förbättring av inomhusmiljön. Inomhustemperaturen var högre efter renoveringen, och de boende uppfattade temperaturförhållanden, luftkvalitet och bullersituationen som bättre efter renoveringen. De energieffektiviserande åtgärder som implementerades vid renoveringen gav en något högre livscykelkostnad än de åtgärder som identifierades som optimala genom livscykelkostnadsoptimering. Det är inte kostnadseffektivt att implementera några energieffektiviseringsåtgärder som del av renoveringen om den lägsta livscykelkostnaden är målsättningen. Vindsisolering är en förhållandevis billigt åtgärd att genomföra, men har begränsad potential i den studerade byggnaden vars vind redan har relativt god termisk prestanda. Fasadisolering kräver en större investering, men har större potential att minska energianvändning på grund av den stora fasadytan. Detta innebär att det är nödvändigt att isolera fasaden för att uppnå hög energibesparing. Värmeåtervinning i ventilationssystemet är kostnadsoptimalt om ett energisbesparingsmål på mer än 40 % ställs på energirenoveringen. Primärenergifaktorerna i den svenska byggnadskoden gynnar bergvärmepump som energitillförselsystem i de studerade byggnaden. Kostnaden för att energirenovera är lägre än att riva och bygga en ny byggnad. En stor andel av kostnaderna vid rivning och nybyggnation är kopplad till rivning och bortforsling av rivningsmassa. I byggnadstyper med stor inre volym i förhållande till uppvärmd golvyta är det inte alltid möjlig att energirenovera till en energiprestanda som är lika god som en ny byggnad. Det krävs också en mer ambitiös renovering för att uppnå samma energiprestanda som en byggnad med mindre inre volym i förhållande till uppvärmd golvyta.
Publisher: Linköping University Electronic Press
ISBN: 9176850072
Category :
Languages : en
Pages : 101
Book Description
Residential buildings account for 27% of the final energy use in the European Union. In cold climates, space heating represents the largest proportion of the energy demand in residential buildings. By implementing energy efficiency measures (EEMs) in existing buildings, energy use can be significantly reduced. The Energy Performance of Buildings Directive states that renovations of buildings offer an opportunity to improve energy efficiency. Renovations that include measures implemented with the specific purpose of reducing energy use are referred to as energy renovations. In addition to improving energy efficiency, an energy renovation can also improve the indoor environment. Sweden, like many other European countries, faces the challenge of renovating an ageing building stock with poor energy performance. Improving energy efficiency and performing energy renovations in a cost-effective manner is central, and optimization approaches are often used to identify suitable EEMs and energy renovation approaches. New buildings usually feature better energy performance compared to older buildings, and one approach for reducing energy use in the building sector could be to demolish old buildings with poor thermal performance and build new buildings with better thermal performance. The aim of this thesis is to evaluate energy renovations of multi-family buildings with regard to space heating demand, life cycle costs, indoor environment and primary energy use. The choice between energy renovation of a multi-family building and the demolition and construction of a new one is also investigated with regard to life cycle costs (LCCs). A Swedish multi-family building in which energy renovation has been carried out is used as a case study. The building was originally constructed in 1961 and has a lightweight concrete construction. The renovation included improving the thermal performance of the building envelope and replacing the exhaust air ventilation system with a mechanical supply and exhaust air ventilation system with heat recovery. The methods used in the studies include dynamic whole building energy simulation, life cycle cost analysis and optimizations, and a questionnaire on indoor environment perception. Extensive field measurements have been performed in the building prior to and after renovation to provide input data and to validate numerical predictions. In addition to the studied building, the analysis of the choice between energy renovation and the demolition and construction of a new building includes three other building construction types, representing common Swedish building types from the 1940s, 1950s and 1970s. The analysis shows that the energy renovation led to a 44% reduction in space heating demand and an improved indoor environment. The indoor temperature was higher after the renovation and the perception of the indoor temperature, air quality and noise in the building improved. The EEMs implemented as part of the energy renovation have a slightly higher LCC than the optimal combinations of EEMs identified in the LCC optimization. It is not cost-optimal to implement any EEMs in the building if the lowest possible LCC is the objective function. Attic insulation has a low cost of implementation but has limited potential in the studied building with its relatively good thermal properties. Insulation of the façade is an expensive measure, but has a great potential to reduce heat demand because of the large façade area. Façade insulation is thus required to achieve significant energy savings. Heat recovery in the ventilation system is cost-effective with an energy saving target above 40% in the studied building. The primary energy factors in the Swedish Building Code favor ground source heat pumps as a heat supply system in the studied building. The LCC of renovation is lower compared to demolishing and constructing a new building. A large proportion of the LCC of demolition and new construction relates to the demolition of the existing building. In a building with a high internal volume to floor area ratio, it is not always possible to renovate to the same energy performance level as when constructing a new building. A more ambitious renovation approach is also needed compared to a building with a smaller volume to floor area ratio. Nära 27 % av den totala energianvändningen i den Europeiska Unionen sker i bostäder. I länder med kallt klimat används den största delen till uppvärmning. Genom att implementera energieffektiviseringsåtgärder i befintliga byggnaden kan energiprestandan signifikant förbättras. Europeiska Unionens direktiv om byggnaders energiprestanda framhåller att ett tillfälle att förbättra byggnaders energieffektivitet finns då byggnader ska renoveras. Byggnadsrenoveringar som innehåller åtgärder som implementeras med det primära syftet att minska energianvändningen kallas ofta energirenoveringar. Utöver energieffektivisering kan energirenoveringar ofta förbättra inomhusmiljön i byggnaden. Som många andra Europeiska länder står Sverige inför utmaningen att renovera ett åldrande byggnadsbestånd med låg energiprestanda. Kostnadseffektivitet är centralt vid energirenoveringar och energieffektivisering och optimeringsansatser är vanliga för att identifiera vilka energieffektiviseringsåtgärder som bör implementeras. Nya byggnader har som regel bättre energiprestanda jämfört med äldre byggnader, och en ansats till ett minska energianvändningen i byggnadssektorn överlag är således att riva äldre byggnader med låg energiprestanda och konstruera nya byggnader med bättre energiprestanda. Syftet med denna avhandling är att utvärdera energirenoveringar av flerfamiljshus avseende effekterna på uppvärmningsbehov, livscykelkostnader, inomhusmiljö och primärenergianvändning. Valet mellan energirenovering kontra att riva och bygga en ny byggnad analyseras också utifrån ett livscykelkostnadsperspektiv. För att studera detta har en svensk flerfamiljsbyggnad som genomgått energirenovering studerats. Byggnaden konstruerades 1961 och har en lättbetongstomme. När byggnaden renoverades förbättrades prestandan hos byggnadens klimatskal och frånluftsventilationssystemet byttes ut mot ett balanserat mekanisk ventilationssystem med värmeåtervinning. Metoderna som använts i studierna i denna avhandling är dynamisk byggandssimulering, beräkning och optimering av livscykelkostnader, samt en enkätstudie om hur de boende uppfattar sin inomhusmiljö. Omfattande mätningar har utförts i byggnaden och har använts som indata och för att validera resultaten. Utöver den studerade byggnaden har tre andra byggnadstyper inkluderats i analysen av valet mellan energirenovering och att riva och konstruera en ny byggnads. Dessa byggnadstyper representerar vanliga svenska byggnadstyper från 1940-, 1950- och 1970-talet. Analyserna visar att den renovering som genomfördes i byggnaden ledde till en minskning av uppvärmningsbehovet med 44 % och en förbättring av inomhusmiljön. Inomhustemperaturen var högre efter renoveringen, och de boende uppfattade temperaturförhållanden, luftkvalitet och bullersituationen som bättre efter renoveringen. De energieffektiviserande åtgärder som implementerades vid renoveringen gav en något högre livscykelkostnad än de åtgärder som identifierades som optimala genom livscykelkostnadsoptimering. Det är inte kostnadseffektivt att implementera några energieffektiviseringsåtgärder som del av renoveringen om den lägsta livscykelkostnaden är målsättningen. Vindsisolering är en förhållandevis billigt åtgärd att genomföra, men har begränsad potential i den studerade byggnaden vars vind redan har relativt god termisk prestanda. Fasadisolering kräver en större investering, men har större potential att minska energianvändning på grund av den stora fasadytan. Detta innebär att det är nödvändigt att isolera fasaden för att uppnå hög energibesparing. Värmeåtervinning i ventilationssystemet är kostnadsoptimalt om ett energisbesparingsmål på mer än 40 % ställs på energirenoveringen. Primärenergifaktorerna i den svenska byggnadskoden gynnar bergvärmepump som energitillförselsystem i de studerade byggnaden. Kostnaden för att energirenovera är lägre än att riva och bygga en ny byggnad. En stor andel av kostnaderna vid rivning och nybyggnation är kopplad till rivning och bortforsling av rivningsmassa. I byggnadstyper med stor inre volym i förhållande till uppvärmd golvyta är det inte alltid möjlig att energirenovera till en energiprestanda som är lika god som en ny byggnad. Det krävs också en mer ambitiös renovering för att uppnå samma energiprestanda som en byggnad med mindre inre volym i förhållande till uppvärmd golvyta.
Cost-Effective Energy Efficient Building Retrofitting
Author: F. Pacheco-Torgal
Publisher: Woodhead Publishing
ISBN: 0081012276
Category : Technology & Engineering
Languages : en
Pages : 633
Book Description
Cost-Effective Energy Efficient Building Retrofitting:Materials, Technologies, Optimization and Case Studies provides essential knowledge for civil engineers, architects, and other professionals working in the field of cost-effective energy efficient building retrofitting. The building sector is responsible for high energy consumption and its global demand is expected to grow as each day there are approximately 200,000 new inhabitants on planet Earth. The majority of electric energy will continue to be generated from the combustion of fossil fuels releasing not only carbon dioxide, but also methane and nitrous oxide. Energy efficiency measures are therefore crucial to reduce greenhouse gas emissions of the building sector. Energy efficient building retrofitting needs to not only be technically feasible, but also economically viable. New building materials and advanced technologies already exist, but the knowledge to integrate all active components is still scarce and far from being widespread among building industry stakeholders. - Emphasizes cost-effective methods for the refurbishment of existing buildings, presenting state-of-the-art technologies - Includes detailed case studies that explain various methods and Net Zero Energy - Explains optimal analysis and prioritization of cost effective strategies
Publisher: Woodhead Publishing
ISBN: 0081012276
Category : Technology & Engineering
Languages : en
Pages : 633
Book Description
Cost-Effective Energy Efficient Building Retrofitting:Materials, Technologies, Optimization and Case Studies provides essential knowledge for civil engineers, architects, and other professionals working in the field of cost-effective energy efficient building retrofitting. The building sector is responsible for high energy consumption and its global demand is expected to grow as each day there are approximately 200,000 new inhabitants on planet Earth. The majority of electric energy will continue to be generated from the combustion of fossil fuels releasing not only carbon dioxide, but also methane and nitrous oxide. Energy efficiency measures are therefore crucial to reduce greenhouse gas emissions of the building sector. Energy efficient building retrofitting needs to not only be technically feasible, but also economically viable. New building materials and advanced technologies already exist, but the knowledge to integrate all active components is still scarce and far from being widespread among building industry stakeholders. - Emphasizes cost-effective methods for the refurbishment of existing buildings, presenting state-of-the-art technologies - Includes detailed case studies that explain various methods and Net Zero Energy - Explains optimal analysis and prioritization of cost effective strategies
Intelligent Environments
Author: P. Droege
Publisher: Elsevier
ISBN: 0128202483
Category : Computers
Languages : en
Pages : 662
Book Description
The promises and realities of digital innovation have come to suffuse everything from city regions to astronomy, government to finance, art to medicine, politics to warfare, and from genetics to reality itself. Digital systems augmenting physical space, buildings, and communities occupy a special place in the evolutionary discourse about advanced technology. The two Intelligent Environments books edited by Peter Droege span a quarter of a century across this genre. The second volume, Intelligent Environments: Advanced Systems for a Healthy Planet, asks: how does civilization approach thinking systems, intelligent spatial models, design methods, and support structures designed for sustainability, in ways that could counteract challenges to terrestrial habitability? This book examines a range of baseline and benchmark practices but also unusual and even sublime endeavors across regions, currencies, infrastructure, architecture, transactive electricity, geodesign, net-positive planning, remote work, integrated transport, and artificial intelligence in understanding the most immediate spatial setting: the human body. The result of this quest is both highly informative and useful, but also critical. It opens windows on what must fast become a central and overarching existential focus in the face of anthropogenic planetary heating and other threats—and raises concomitant questions about direction, scope, and speed of that change. - The volume uses a cross-disciplinary approach to exploring digitally enhanced, spatially relevant sustainability systems - It critically queries the promise of information technologies and related support systems to help safeguard the habitability of the planet - The new edition is fully updated and reorganized in thematically linked yet stand-alone chapters and is referenced to global bodies of knowledge for ease of discovery and access - It includes copious images, maps, diagrams, and references to other media to enhance understanding
Publisher: Elsevier
ISBN: 0128202483
Category : Computers
Languages : en
Pages : 662
Book Description
The promises and realities of digital innovation have come to suffuse everything from city regions to astronomy, government to finance, art to medicine, politics to warfare, and from genetics to reality itself. Digital systems augmenting physical space, buildings, and communities occupy a special place in the evolutionary discourse about advanced technology. The two Intelligent Environments books edited by Peter Droege span a quarter of a century across this genre. The second volume, Intelligent Environments: Advanced Systems for a Healthy Planet, asks: how does civilization approach thinking systems, intelligent spatial models, design methods, and support structures designed for sustainability, in ways that could counteract challenges to terrestrial habitability? This book examines a range of baseline and benchmark practices but also unusual and even sublime endeavors across regions, currencies, infrastructure, architecture, transactive electricity, geodesign, net-positive planning, remote work, integrated transport, and artificial intelligence in understanding the most immediate spatial setting: the human body. The result of this quest is both highly informative and useful, but also critical. It opens windows on what must fast become a central and overarching existential focus in the face of anthropogenic planetary heating and other threats—and raises concomitant questions about direction, scope, and speed of that change. - The volume uses a cross-disciplinary approach to exploring digitally enhanced, spatially relevant sustainability systems - It critically queries the promise of information technologies and related support systems to help safeguard the habitability of the planet - The new edition is fully updated and reorganized in thematically linked yet stand-alone chapters and is referenced to global bodies of knowledge for ease of discovery and access - It includes copious images, maps, diagrams, and references to other media to enhance understanding