Author: Vinay Kumar Tyagi
Publisher: Elsevier
ISBN: 0323901794
Category : Science
Languages : en
Pages : 484
Book Description
Clean Energy and Resource Recovery: Wastewater Treatment Plants as Bio-refineries, Volume 2, summarizes the fundamentals of various treatment modes applied to the recovery of energy and value-added products from wastewater treatment plants. The book addresses the production of biofuel, heat, and electricity, chemicals, feed, and other products from municipal wastewater, industrial wastewater, and sludge. It intends to provide the readers an account of up-to-date information on the recovery of biofuels and other value-added products using conventional and advanced technological developments. The book starts with identifying the key problems of the sectors and then provides solutions to them with step-by-step guidance on the implementation of processes and procedures. Titles compiled in this book further explore related issues like the safe disposal of leftovers, from a local to global scale. Finally, the book sheds light on how wastewater treatment facilities reduce stress on energy systems, decrease air and water pollution, build resiliency, and drive local economic activity.As a compliment to Volume 1: Biomass Waste Based Biorefineries, Clean Energy and Resource Recovery, Volume 2: Wastewater Treatment Plants as Bio-refineries is a comprehensive reference on all aspects of energy and resource recovery from wastewater. The book is going to be a handy reference tool for energy researchers, environmental scientists, and civil, chemical, and municipal engineers interested in waste-to-energy. - Offers a comprehensive overview of the fundamental treatments and methods used in the recovery of energy and value-added products from wastewater - Identifies solutions to key problems related to wastewater to energy/resource recovery through conventional and advanced technologies and explore the alternatives - Provides step-by-step guidance on procedures and calculations from practical field data - Includes successful case studies from both developing and developed countries
Clean Energy and Resource Recovery
Author: Vinay Kumar Tyagi
Publisher: Elsevier
ISBN: 0323901794
Category : Science
Languages : en
Pages : 484
Book Description
Clean Energy and Resource Recovery: Wastewater Treatment Plants as Bio-refineries, Volume 2, summarizes the fundamentals of various treatment modes applied to the recovery of energy and value-added products from wastewater treatment plants. The book addresses the production of biofuel, heat, and electricity, chemicals, feed, and other products from municipal wastewater, industrial wastewater, and sludge. It intends to provide the readers an account of up-to-date information on the recovery of biofuels and other value-added products using conventional and advanced technological developments. The book starts with identifying the key problems of the sectors and then provides solutions to them with step-by-step guidance on the implementation of processes and procedures. Titles compiled in this book further explore related issues like the safe disposal of leftovers, from a local to global scale. Finally, the book sheds light on how wastewater treatment facilities reduce stress on energy systems, decrease air and water pollution, build resiliency, and drive local economic activity.As a compliment to Volume 1: Biomass Waste Based Biorefineries, Clean Energy and Resource Recovery, Volume 2: Wastewater Treatment Plants as Bio-refineries is a comprehensive reference on all aspects of energy and resource recovery from wastewater. The book is going to be a handy reference tool for energy researchers, environmental scientists, and civil, chemical, and municipal engineers interested in waste-to-energy. - Offers a comprehensive overview of the fundamental treatments and methods used in the recovery of energy and value-added products from wastewater - Identifies solutions to key problems related to wastewater to energy/resource recovery through conventional and advanced technologies and explore the alternatives - Provides step-by-step guidance on procedures and calculations from practical field data - Includes successful case studies from both developing and developed countries
Publisher: Elsevier
ISBN: 0323901794
Category : Science
Languages : en
Pages : 484
Book Description
Clean Energy and Resource Recovery: Wastewater Treatment Plants as Bio-refineries, Volume 2, summarizes the fundamentals of various treatment modes applied to the recovery of energy and value-added products from wastewater treatment plants. The book addresses the production of biofuel, heat, and electricity, chemicals, feed, and other products from municipal wastewater, industrial wastewater, and sludge. It intends to provide the readers an account of up-to-date information on the recovery of biofuels and other value-added products using conventional and advanced technological developments. The book starts with identifying the key problems of the sectors and then provides solutions to them with step-by-step guidance on the implementation of processes and procedures. Titles compiled in this book further explore related issues like the safe disposal of leftovers, from a local to global scale. Finally, the book sheds light on how wastewater treatment facilities reduce stress on energy systems, decrease air and water pollution, build resiliency, and drive local economic activity.As a compliment to Volume 1: Biomass Waste Based Biorefineries, Clean Energy and Resource Recovery, Volume 2: Wastewater Treatment Plants as Bio-refineries is a comprehensive reference on all aspects of energy and resource recovery from wastewater. The book is going to be a handy reference tool for energy researchers, environmental scientists, and civil, chemical, and municipal engineers interested in waste-to-energy. - Offers a comprehensive overview of the fundamental treatments and methods used in the recovery of energy and value-added products from wastewater - Identifies solutions to key problems related to wastewater to energy/resource recovery through conventional and advanced technologies and explore the alternatives - Provides step-by-step guidance on procedures and calculations from practical field data - Includes successful case studies from both developing and developed countries
A-B processes: Towards Energy Self-sufficient Municipal Wastewater Treatment
Author: Yu Liu
Publisher: IWA Publishing
ISBN: 1789060079
Category : Science
Languages : en
Pages : 184
Book Description
The principle of the conventional activated sludge (CAS) for municipal wastewater treatment is primarily based on biological oxidation by which organic matters are converted to biomass and carbon dioxide. After more than 100 years’ successful application, the CAS process is receiving increasing critiques on its high energy consumption and excessive sludge generation. Currently, almost all municipal wastewater treatment plants with the CAS as a core process are being operated in an energy-negative fashion. To tackle such challenging situations, there is a need to re-examine the present wastewater treatment philosophy by developing and adopting novel process configurations and emerging technologies. The solutions going forward should rely on the ways to improve direct energy recovery from wastewater, while minimizing in-plant energy consumption. This book begins with a critical overview of the energy situation and challenges in current municipal wastewater treatment plants, showing the necessity of the paradigm shift from removal to recovery in terms of energy and resource. As such, the concept of A-B process is discussed in detail in the book. It appears that various A-B process configurations are able to provide possible engineering solutions in which A-stage is primarily designed for COD capture with the aim for direct anaerobic treatment without producing excessive biosludge, while B-stage is designated for nitrogen removal. Making the wastewater treatment energy self-sustainable is obviously of global significance and eventually may become a game changer for the global market of the municipal wastewater reclamation technology. The principal audiences include practitioners, professionals, university researchers, undergraduate and postgraduate students who are interested and specialized in municipal wastewater treatment and process design, environmental engineering, and environmental biotechnology.
Publisher: IWA Publishing
ISBN: 1789060079
Category : Science
Languages : en
Pages : 184
Book Description
The principle of the conventional activated sludge (CAS) for municipal wastewater treatment is primarily based on biological oxidation by which organic matters are converted to biomass and carbon dioxide. After more than 100 years’ successful application, the CAS process is receiving increasing critiques on its high energy consumption and excessive sludge generation. Currently, almost all municipal wastewater treatment plants with the CAS as a core process are being operated in an energy-negative fashion. To tackle such challenging situations, there is a need to re-examine the present wastewater treatment philosophy by developing and adopting novel process configurations and emerging technologies. The solutions going forward should rely on the ways to improve direct energy recovery from wastewater, while minimizing in-plant energy consumption. This book begins with a critical overview of the energy situation and challenges in current municipal wastewater treatment plants, showing the necessity of the paradigm shift from removal to recovery in terms of energy and resource. As such, the concept of A-B process is discussed in detail in the book. It appears that various A-B process configurations are able to provide possible engineering solutions in which A-stage is primarily designed for COD capture with the aim for direct anaerobic treatment without producing excessive biosludge, while B-stage is designated for nitrogen removal. Making the wastewater treatment energy self-sustainable is obviously of global significance and eventually may become a game changer for the global market of the municipal wastewater reclamation technology. The principal audiences include practitioners, professionals, university researchers, undergraduate and postgraduate students who are interested and specialized in municipal wastewater treatment and process design, environmental engineering, and environmental biotechnology.
Sewage Treatment Plants
Author: Katerina Stamatelatou
Publisher: IWA Publishing
ISBN: 1780405014
Category : Science
Languages : en
Pages : 376
Book Description
Sewage Treatment Plants: Economic Evaluation of Innovative Technologies for Energy Efficiency aims to show how cost saving can be achieved in sewage treatment plants through implementation of novel, energy efficient technologies or modification of the conventional, energy demanding treatment facilities towards the concept of energy streamlining. The book brings together knowledge from Engineering, Economics, Utility Management and Practice and helps to provide a better understanding of the real economic value with methodologies and practices about innovative energy technologies and policies in sewage treatment plants.
Publisher: IWA Publishing
ISBN: 1780405014
Category : Science
Languages : en
Pages : 376
Book Description
Sewage Treatment Plants: Economic Evaluation of Innovative Technologies for Energy Efficiency aims to show how cost saving can be achieved in sewage treatment plants through implementation of novel, energy efficient technologies or modification of the conventional, energy demanding treatment facilities towards the concept of energy streamlining. The book brings together knowledge from Engineering, Economics, Utility Management and Practice and helps to provide a better understanding of the real economic value with methodologies and practices about innovative energy technologies and policies in sewage treatment plants.
Wastewater
Author: Pay Drechsel
Publisher: Springer
ISBN: 9401795452
Category : Technology & Engineering
Languages : en
Pages : 287
Book Description
The books provides a timely analysis in support of a paradigm shift in the field of wastewater management, from ‘treatment for disposal’ to ‘treatment for reuse’ by offering a variety of value propositions for water, nutrient and energy recovery which can support cost savings, cost recovery, and profits, in a sector that traditionally relies on public funding. The book provides new insights into the economics of wastewater use, applicable to developed and developing countries striving to transform wastewater from an unpleasant liability to a valuable asset and recasting urbanization from a daunting challenge into a resource recovery opportunity. “It requires business thinking to transform septage and sewage into valuable products. A must read for water scholars, policy makers, practitioners, and entrepreneurs". Guy Hutton, Senior Economist, Water and Sanitation Program, Water Global Practice, World Bank “This book provides compelling evidence and real solutions for the new ‘resource from waste’ approach that is transforming sanitation, boosting livelihoods, and strengthening urban resilience”. Christopher Scott, Professor and Distinguished Scholar, University of Arizona “This book shows how innovative business thinking and partnerships around resource recovery and reuse fit well within an inclusive green economy and climate change adaptation and mitigation strategies”. Akiça Bahri, Coordinator of the African Water Facility, Tunisia, and award-winning researcher
Publisher: Springer
ISBN: 9401795452
Category : Technology & Engineering
Languages : en
Pages : 287
Book Description
The books provides a timely analysis in support of a paradigm shift in the field of wastewater management, from ‘treatment for disposal’ to ‘treatment for reuse’ by offering a variety of value propositions for water, nutrient and energy recovery which can support cost savings, cost recovery, and profits, in a sector that traditionally relies on public funding. The book provides new insights into the economics of wastewater use, applicable to developed and developing countries striving to transform wastewater from an unpleasant liability to a valuable asset and recasting urbanization from a daunting challenge into a resource recovery opportunity. “It requires business thinking to transform septage and sewage into valuable products. A must read for water scholars, policy makers, practitioners, and entrepreneurs". Guy Hutton, Senior Economist, Water and Sanitation Program, Water Global Practice, World Bank “This book provides compelling evidence and real solutions for the new ‘resource from waste’ approach that is transforming sanitation, boosting livelihoods, and strengthening urban resilience”. Christopher Scott, Professor and Distinguished Scholar, University of Arizona “This book shows how innovative business thinking and partnerships around resource recovery and reuse fit well within an inclusive green economy and climate change adaptation and mitigation strategies”. Akiça Bahri, Coordinator of the African Water Facility, Tunisia, and award-winning researcher
Water - Energy Interactions in Water Reuse
Author: Valentina Lazarova
Publisher: IWA Publishing
ISBN: 184339541X
Category : Science
Languages : en
Pages : 345
Book Description
The focus of Water-Energy Interactions in Water Reuse is to collect original contributions and some relevant publications from recent conference proceedings in order to provide state-of-art information on the use of energy in wastewater treatment and reuse systems. Special focus is given to innovative technologies, such as membrane bioreactors, high pressure membrane filtration systems, and novel water reuse processes. A comparison of energy consumption in water reuse systems and desalination will be also provided. Water-Energy Interactions in Water Reuse covers the use of energy in conventional and advanced wastewater treatment for various water reuse applications, including carbon footprint, energy efficiency, energy self-sufficient facilities and novel technologies, such as microbial fuel cells and biogas valorisation. It is of real value to water utility managers; policy makers for water and wastewater treatment; water resources planners, and researchers and students in environmental engineering and science. Editors: Valentina Lazarova, Suez Environnement, France, Kwang-Ho Choo, Kyungpook National University, Korea, Peter Cornel, Technical University of Darmstadt, Germany
Publisher: IWA Publishing
ISBN: 184339541X
Category : Science
Languages : en
Pages : 345
Book Description
The focus of Water-Energy Interactions in Water Reuse is to collect original contributions and some relevant publications from recent conference proceedings in order to provide state-of-art information on the use of energy in wastewater treatment and reuse systems. Special focus is given to innovative technologies, such as membrane bioreactors, high pressure membrane filtration systems, and novel water reuse processes. A comparison of energy consumption in water reuse systems and desalination will be also provided. Water-Energy Interactions in Water Reuse covers the use of energy in conventional and advanced wastewater treatment for various water reuse applications, including carbon footprint, energy efficiency, energy self-sufficient facilities and novel technologies, such as microbial fuel cells and biogas valorisation. It is of real value to water utility managers; policy makers for water and wastewater treatment; water resources planners, and researchers and students in environmental engineering and science. Editors: Valentina Lazarova, Suez Environnement, France, Kwang-Ho Choo, Kyungpook National University, Korea, Peter Cornel, Technical University of Darmstadt, Germany
Wastewater Treatment Systems
Author: Gustaf Olsson
Publisher: IWA Publishing
ISBN: 1900222159
Category : Science
Languages : en
Pages : 740
Book Description
This is a book for those operating and studying biological wastewater treatment plants. It introduces the state-of-the-art in process systems analysis (modelling and simulation, monitoring and diagnosis, process control and instrumentation) and in particular its application to wastewater treatment. While the emphasis is on biological nutrient removal, there is discussion of anaerobic treatment, and the principles apply to any treatment process. For the computer literate there is also a collection of MATLAB programs and functions that are mentioned throughout the book. They will run on both the professional and student editions of MATLAB Version 5. Contents Modelling Plant Dynamics, Basic Modelling, Advanced Modelling Empirical or Black-Box Models, Experiments and Data Screening, Principles of Parameter Estimation, Fitting and Validating Models, Simulators Diagnosis Diagnosis - an Introduction, Quality Management, Model Based Diagnosis, Knowledge Based Systems Control Goals and Strategies, Disturbances Manipulated Variables, Feedback Control, Model Based Control, Batch Plant Control, Plant Wide Control, Benefit Studies Instrumentation Primary Sensors, Analysers Actuators and Controllers The Future
Publisher: IWA Publishing
ISBN: 1900222159
Category : Science
Languages : en
Pages : 740
Book Description
This is a book for those operating and studying biological wastewater treatment plants. It introduces the state-of-the-art in process systems analysis (modelling and simulation, monitoring and diagnosis, process control and instrumentation) and in particular its application to wastewater treatment. While the emphasis is on biological nutrient removal, there is discussion of anaerobic treatment, and the principles apply to any treatment process. For the computer literate there is also a collection of MATLAB programs and functions that are mentioned throughout the book. They will run on both the professional and student editions of MATLAB Version 5. Contents Modelling Plant Dynamics, Basic Modelling, Advanced Modelling Empirical or Black-Box Models, Experiments and Data Screening, Principles of Parameter Estimation, Fitting and Validating Models, Simulators Diagnosis Diagnosis - an Introduction, Quality Management, Model Based Diagnosis, Knowledge Based Systems Control Goals and Strategies, Disturbances Manipulated Variables, Feedback Control, Model Based Control, Batch Plant Control, Plant Wide Control, Benefit Studies Instrumentation Primary Sensors, Analysers Actuators and Controllers The Future
Innovative Wastewater Treatment & Resource Recovery Technologies: Impacts on Energy, Economy and Environment
Author: Juan M. Lema
Publisher: IWA Publishing
ISBN: 1780407866
Category : Science
Languages : en
Pages : 690
Book Description
This book introduces the 3R concept applied to wastewater treatment and resource recovery under a double perspective. Firstly, it deals with innovative technologies leading to: Reducing energy requirements, space and impacts; Reusing water and sludge of sufficient quality; and Recovering resources such as energy, nutrients, metals and chemicals, including biopolymers. Besides targeting effective C,N&P removal, other issues such as organic micropollutants, gases and odours emissions are considered. Most of the technologies analysed have been tested at pilot- or at full-scale. Tools and methods for their Economic, Environmental, Legal and Social impact assessment are described. The 3R concept is also applied to Innovative Processes design, considering different levels of innovation: Retrofitting, where novel units are included in more conventional processes; Re-Thinking, which implies a substantial flowsheet modification; and Re-Imagining, with completely new conceptions. Tools are presented for Modelling, Optimising and Selecting the most suitable plant layout for each particular scenario from a holistic technical, economic and environmental point of view.
Publisher: IWA Publishing
ISBN: 1780407866
Category : Science
Languages : en
Pages : 690
Book Description
This book introduces the 3R concept applied to wastewater treatment and resource recovery under a double perspective. Firstly, it deals with innovative technologies leading to: Reducing energy requirements, space and impacts; Reusing water and sludge of sufficient quality; and Recovering resources such as energy, nutrients, metals and chemicals, including biopolymers. Besides targeting effective C,N&P removal, other issues such as organic micropollutants, gases and odours emissions are considered. Most of the technologies analysed have been tested at pilot- or at full-scale. Tools and methods for their Economic, Environmental, Legal and Social impact assessment are described. The 3R concept is also applied to Innovative Processes design, considering different levels of innovation: Retrofitting, where novel units are included in more conventional processes; Re-Thinking, which implies a substantial flowsheet modification; and Re-Imagining, with completely new conceptions. Tools are presented for Modelling, Optimising and Selecting the most suitable plant layout for each particular scenario from a holistic technical, economic and environmental point of view.
Bioelectrochemical Systems
Author: Korneel Rabaey
Publisher: IWA Publishing
ISBN: 184339233X
Category : Science
Languages : en
Pages : 525
Book Description
In the context of wastewater treatment, Bioelectrochemical Systems (BESs) have gained considerable interest in the past few years, and several BES processes are on the brink of application to this area. This book, written by a large number of world experts in the different sub-topics, describes the different aspects and processes relevant to their development. Bioelectrochemical Systems (BESs) use micro-organisms to catalyze an oxidation and/or reduction reaction at an anodic and cathodic electrode respectively. Briefly, at an anode oxidation of organic and inorganic electron donors can occur. Prime examples of such electron donors are waste organics and sulfides. At the cathode, an electron acceptor such as oxygen or nitrate can be reduced. The anode and the cathode are connected through an electrical circuit. If electrical power is harvested from this circuit, the system is called a Microbial Fuel Cell; if electrical power is invested, the system is called a Microbial Electrolysis Cell. The overall framework of bio-energy and bio-fuels is discussed. A number of chapters discuss the basics – microbiology, microbial ecology, electrochemistry, technology and materials development. The book continues by highlighting the plurality of processes based on BES technology already in existence, going from wastewater based reactors to sediment based bio-batteries. The integration of BESs into existing water or process lines is discussed. Finally, an outlook is provided of how BES will fit within the emerging biorefinery area.
Publisher: IWA Publishing
ISBN: 184339233X
Category : Science
Languages : en
Pages : 525
Book Description
In the context of wastewater treatment, Bioelectrochemical Systems (BESs) have gained considerable interest in the past few years, and several BES processes are on the brink of application to this area. This book, written by a large number of world experts in the different sub-topics, describes the different aspects and processes relevant to their development. Bioelectrochemical Systems (BESs) use micro-organisms to catalyze an oxidation and/or reduction reaction at an anodic and cathodic electrode respectively. Briefly, at an anode oxidation of organic and inorganic electron donors can occur. Prime examples of such electron donors are waste organics and sulfides. At the cathode, an electron acceptor such as oxygen or nitrate can be reduced. The anode and the cathode are connected through an electrical circuit. If electrical power is harvested from this circuit, the system is called a Microbial Fuel Cell; if electrical power is invested, the system is called a Microbial Electrolysis Cell. The overall framework of bio-energy and bio-fuels is discussed. A number of chapters discuss the basics – microbiology, microbial ecology, electrochemistry, technology and materials development. The book continues by highlighting the plurality of processes based on BES technology already in existence, going from wastewater based reactors to sediment based bio-batteries. The integration of BESs into existing water or process lines is discussed. Finally, an outlook is provided of how BES will fit within the emerging biorefinery area.
Energy Research Abstracts
Water Reuse
Author: National Research Council
Publisher: National Academies Press
ISBN: 0309224624
Category : Science
Languages : en
Pages : 276
Book Description
Expanding water reuse-the use of treated wastewater for beneficial purposes including irrigation, industrial uses, and drinking water augmentation-could significantly increase the nation's total available water resources. Water Reuse presents a portfolio of treatment options available to mitigate water quality issues in reclaimed water along with new analysis suggesting that the risk of exposure to certain microbial and chemical contaminants from drinking reclaimed water does not appear to be any higher than the risk experienced in at least some current drinking water treatment systems, and may be orders of magnitude lower. This report recommends adjustments to the federal regulatory framework that could enhance public health protection for both planned and unplanned (or de facto) reuse and increase public confidence in water reuse.
Publisher: National Academies Press
ISBN: 0309224624
Category : Science
Languages : en
Pages : 276
Book Description
Expanding water reuse-the use of treated wastewater for beneficial purposes including irrigation, industrial uses, and drinking water augmentation-could significantly increase the nation's total available water resources. Water Reuse presents a portfolio of treatment options available to mitigate water quality issues in reclaimed water along with new analysis suggesting that the risk of exposure to certain microbial and chemical contaminants from drinking reclaimed water does not appear to be any higher than the risk experienced in at least some current drinking water treatment systems, and may be orders of magnitude lower. This report recommends adjustments to the federal regulatory framework that could enhance public health protection for both planned and unplanned (or de facto) reuse and increase public confidence in water reuse.