Enabling a Laser Plasma Accelerator Driven Free Electron Laser PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Enabling a Laser Plasma Accelerator Driven Free Electron Laser PDF full book. Access full book title Enabling a Laser Plasma Accelerator Driven Free Electron Laser by Nathan Majernik. Download full books in PDF and EPUB format.

Enabling a Laser Plasma Accelerator Driven Free Electron Laser

Enabling a Laser Plasma Accelerator Driven Free Electron Laser PDF Author: Nathan Majernik
Publisher:
ISBN:
Category :
Languages : en
Pages : 168

Book Description
The free electron laser (FEL) is the brightest available source of x-rays, surpassing other options by more than ten orders of magnitude. The FEL's short ($\sim$femtosecond), high power ($\sim$gigawatt), coherent x-ray pulses are uniquely capable of probing ultrafast and ultrasmall atomic and molecular dynamics and structure, making them an invaluable research tool for biology, chemistry, material science, physics, medicine, and other fields. Unfortunately, all extant x-ray FELs rely on long rf linacs and undulators, with a footprint of kilometers and a cost on the order of a billion dollars. This severely limits the number of x-ray FELs, with the half dozen existing installations funded at the nation state level. These facilities are significantly oversubscribed, to the detriment of scientific and technological progress. Therefore, attempts to reduce the size and cost of FELs are an active area of research in an effort to increase access to these powerful research tools, with the goal of making x-ray FELs affordable to universities and companies. One of the approaches being researched is the laser plasma accelerator (LPA). The LPA uses an ultra-high intensity laser to eject plasma electrons from a bubble region, producing longitudinal accelerating fields more than three orders of magnitude higher than what can be achieved in an rf linac. In principle, this could shrink the FEL accelerating section from the kilometer scale to a tabletop. To date though, despite continual progress and refinement over the last decade, LPA beam quality has not yet reached the level where it can be directly used as an FEL driver due to stringent constraints on the lasing dynamics. The BELLA FEL experiment at Lawrence Berkeley National Lab intends to decompress the beam to skirt some of the beam quality requirements, by stretching the beam longitudinally and reducing local energy spread. This dissertation will discuss the design and implementation of two subsystems essential for the successful operation of this experiment. The first of these is a coherent transition radiation bunch length diagnostic, which is required to measure the length of the LPA bunches and extrapolate other details about the experiment's performance. The second is an electromagnetic chicane which performs the decompression of the electron beam. A final chapter explores the use of advanced undulators to enable the next generation of LPA driven FELs without decompression and discusses methods for realizing such undulators.

Enabling a Laser Plasma Accelerator Driven Free Electron Laser

Enabling a Laser Plasma Accelerator Driven Free Electron Laser PDF Author: Nathan Majernik
Publisher:
ISBN:
Category :
Languages : en
Pages : 168

Book Description
The free electron laser (FEL) is the brightest available source of x-rays, surpassing other options by more than ten orders of magnitude. The FEL's short ($\sim$femtosecond), high power ($\sim$gigawatt), coherent x-ray pulses are uniquely capable of probing ultrafast and ultrasmall atomic and molecular dynamics and structure, making them an invaluable research tool for biology, chemistry, material science, physics, medicine, and other fields. Unfortunately, all extant x-ray FELs rely on long rf linacs and undulators, with a footprint of kilometers and a cost on the order of a billion dollars. This severely limits the number of x-ray FELs, with the half dozen existing installations funded at the nation state level. These facilities are significantly oversubscribed, to the detriment of scientific and technological progress. Therefore, attempts to reduce the size and cost of FELs are an active area of research in an effort to increase access to these powerful research tools, with the goal of making x-ray FELs affordable to universities and companies. One of the approaches being researched is the laser plasma accelerator (LPA). The LPA uses an ultra-high intensity laser to eject plasma electrons from a bubble region, producing longitudinal accelerating fields more than three orders of magnitude higher than what can be achieved in an rf linac. In principle, this could shrink the FEL accelerating section from the kilometer scale to a tabletop. To date though, despite continual progress and refinement over the last decade, LPA beam quality has not yet reached the level where it can be directly used as an FEL driver due to stringent constraints on the lasing dynamics. The BELLA FEL experiment at Lawrence Berkeley National Lab intends to decompress the beam to skirt some of the beam quality requirements, by stretching the beam longitudinally and reducing local energy spread. This dissertation will discuss the design and implementation of two subsystems essential for the successful operation of this experiment. The first of these is a coherent transition radiation bunch length diagnostic, which is required to measure the length of the LPA bunches and extrapolate other details about the experiment's performance. The second is an electromagnetic chicane which performs the decompression of the electron beam. A final chapter explores the use of advanced undulators to enable the next generation of LPA driven FELs without decompression and discusses methods for realizing such undulators.

Free-electron Laser Driven by the LBNL Laser-plasma Accelerator

Free-electron Laser Driven by the LBNL Laser-plasma Accelerator PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description
A design of a compact free-electron laser (FEL), generating ultra-fast, high-peak flux, XUV pulses is presented. The FEL is driven by ahigh-current, 0.5 GeV electron beam from the Lawrence Berkeley National Laboratory (LBNL) laser-plasma accelerator, whose active acceleration length is only a few centimeters. The proposed ultra-fast source (~;;10 fs) would be intrinsically temporally synchronized to the drive laser pulse, enabling pump-probe studies in ultra-fast science. Owing to the high current (>10 kA) of the laser-plasma-accelerated electron beams, saturated output fluxes are potentially greater than 10^13 photons/pulse. Devices based both on self-amplified spontaneous emission and high-harmonic generated input seeds, to reduce undulator length and fluctuations, are considered.

Studies of a Free Electron Laser Driven by a Laser-Plasma Accelerator

Studies of a Free Electron Laser Driven by a Laser-Plasma Accelerator PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description
A free electron laser (FEL) uses an undulator, a set of alternating magnets producing a periodic magnetic fi eld, to stimulate emission of coherent radiation from a relativistic electron beam. The Lasers, Optical Accelerator Systems Integrated Studies (LOASIS) group at Lawrence Berkeley National Laboratory (LBNL) will use an innovative laserplasma wakefi eld accelerator to produce an electron beam to drive a proposed FEL. In order to optimize the FEL performance, the dependence on electron beam and undulator parameters must be understood. Numerical modeling of the FEL using the simulation code GINGER predicts the experimental results for given input parameters. Among the parameters studied were electron beam energy spread, emittance, and mismatch with the undulator focusing. Vacuum-chamber wakefi elds were also simulated to study their effect on FEL performance. Energy spread was found to be the most infl uential factor, with output FEL radiation power sharply decreasing for relative energy spreads greater than 0.33%. Vacuum chamber wakefi elds and beam mismatch had little effect on the simulated LOASIS FEL at the currents considered. This study concludes that continued improvement of the laser-plasma wakefi eld accelerator electron beam will allow the LOASIS FEL to operate in an optimal regime, producing high-quality XUV and x-ray pulses.

Design of a Free-electron Laser Driven by the LBNLlaser-plasma-accelerator

Design of a Free-electron Laser Driven by the LBNLlaser-plasma-accelerator PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description
We discuss the design and current status of a compactfree-electron laser (FEL), generating ultra-fast, high-peak flux, VUVpulses driven by a high-current, GeV electron beam from the existingLawrence Berkeley National Laboratory (LBNL) laser-plasma accelerator, whose active acceleration length is only a few cm. The proposedultra-fast source would be intrinsically temporally synchronized to thedrive laser pulse, enabling pump-probe studies in ultra-fast science withpulse lengths of tens of fs. Owing to the high current (& 10 kA) ofthe laser-plasma-accelerated electron beams, saturated output fluxes arepotentially greater than 1013 photons/pulse. Devices based both on SASEand high-harmonic generated input seeds, to reduce undulator length andfluctuations, are considered.

Laser-Plasma Interactions

Laser-Plasma Interactions PDF Author: Dino A. Jaroszynski
Publisher: CRC Press
ISBN: 1584887796
Category : Science
Languages : en
Pages : 454

Book Description
A Solid Compendium of Advanced Diagnostic and Simulation ToolsExploring the most exciting and topical areas in this field, Laser-Plasma Interactions focuses on the interaction of intense laser radiation with plasma. After discussing the basic theory of the interaction of intense electromagnetic radiation fields with matter, the book covers three ap

Frontiers in High Energy Density Physics

Frontiers in High Energy Density Physics PDF Author: National Research Council
Publisher: National Academies Press
ISBN: 030908637X
Category : Science
Languages : en
Pages : 177

Book Description
Recent scientific and technical advances have made it possible to create matter in the laboratory under conditions relevant to astrophysical systems such as supernovae and black holes. These advances will also benefit inertial confinement fusion research and the nation's nuclear weapon's program. The report describes the major research facilities on which such high energy density conditions can be achieved and lists a number of key scientific questions about high energy density physics that can be addressed by this research. Several recommendations are presented that would facilitate the development of a comprehensive strategy for realizing these research opportunities.

Compact Laser-Plasma-Accelerator-Driven Free-Electron Laser Using a Transverse Gradient Undulator

Compact Laser-Plasma-Accelerator-Driven Free-Electron Laser Using a Transverse Gradient Undulator PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 5

Book Description


Plasma Science

Plasma Science PDF Author: National Academies of Sciences Engineering and Medicine
Publisher:
ISBN: 9780309677608
Category :
Languages : en
Pages : 291

Book Description
Plasma Science and Engineering transforms fundamental scientific research into powerful societal applications, from materials processing and healthcare to forecasting space weather. Plasma Science: Enabling Technology, Sustainability, Security and Exploration discusses the importance of plasma research, identifies important grand challenges for the next decade, and makes recommendations on funding and workforce. This publication will help federal agencies, policymakers, and academic leadership understand the importance of plasma research and make informed decisions about plasma science funding, workforce, and research directions.

Conceptual Design of a Laser-plasma Accelerator Driven Free-electron Laser Demonstration Experiment

Conceptual Design of a Laser-plasma Accelerator Driven Free-electron Laser Demonstration Experiment PDF Author: Thorben Seggebrock
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description


Towards Compact and Advanced Free Electron Laser

Towards Compact and Advanced Free Electron Laser PDF Author: Amin Ghaith
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Book Description
X-ray Free Electron Lasers (FEL) are nowadays unique intense coherent fs light sources used for multi-disciplinary investigations of matter. A new acceleration scheme such as Laser Plasma Accelerator (LPA) is now capable of producing an accelerating gradient of few GeV/cm far superior to that of conventional RF linacs. This PhD work has been conducted in the framework of R&D programs of the LUNEX5 (free electron Laser Using a New accelerator for the Exploitation of X-ray radiation of 5th generation) project of advanced and compact Free Electron laser demonstrator with pilot user applications. It comprises a 400 MeV superconducting linac for studies of advanced FEL schemes, high repetition rate operation (10 kHz), multi-FEL lines, a Laser Wake Field Accelerator (LWFA) for its qualification by a FEL application. The FEL lines comports enables advanced seeding in the 40-4 nm spectral range using high gain harmonic generation (HGHG) and echo-enabled harmonic generation (EEHG) with compact short period high field cryogenic undulators. The study of compact devices suitable for compact FEL applications is thus examined. One first aspect concerns the reduction of the Free Electron Laser gain medium (electrons in undulator) where shortening of the period is on the expense of the magnetic field leading to an intensity reduction at high harmonics. Compact cryogenic permanent magnet based undulators (CPMUs), where the magnet performance is increased at cryogenic temperature making them suitable for compact applications, are studied. Three CPMUs of period 18 mm have been built: two are installed at SOLEIL storage ring and one at COXINEL experiment. A second part of the work is developed in the frame of the R&D programs is the COXINEL experiment with an aim at demonstrating FEL amplification using an LPA source. The line enables to manipulate the properties of the produced electron beams (as energy spread, divergence, induced dispersion due) before being used for light source applications. The electron beam generated is highly divergent and requires a good handling at an early stage with strong quadrupoles, to be installed immediately after the electron generation source. Hence, the development of the so-called QUAPEVAs, innovative permanent magnet quadrupoles with high tunable gradient, is presented. The QUAPEVAs are optimized with RADIA code and characterized with three magnetic measurements. High tunable gradient is achieved while maintaining a rather good magnetic center excursion that allowed for beam pointing alignment compensation at COXINEL, where the beam is well-focused with zero dispersion at any location along the line. The QUAPEVAs constitute original systems in the landscape of variable high gradient quadrupoles developed so far. A third part of the work concerns the observation of tunable monochromatic undulator radiation on the COXINEL line. The electron beam of energy of 170 MeV is transported and focused in a 2-m long CPMU with a period of 18 mm emitting radiation light at 200 nm. The spectral flux is characterized using a UV spectrometer and the angular flux is captured by a CCD camera. The wavelength is tuned with the undulator gap variation. The spatio-spectral moon shape type pattern of the undulator radiation provided an insight on the electron beam quality and its transport enabling the estimation of the electron beam parameters such as energy spread and divergence. The final aspect of the work is related to the comparison between the echo and high gain harmonic generation, in the frame of my participation to an experiment carried out at FERMI@ELETTRA. At FERMI, we have demonstrated a high gain lasing using EEHG at a wavelength of 5.9 nm where it showed a narrower spectra and better reproducibility compared to a two-stage HGHG. This PhD work constitutes a step forward towards advanced compact Free Electron Lasers.