Author: Art B. Owen
Publisher: CRC Press
ISBN: 1420036157
Category : Mathematics
Languages : en
Pages : 322
Book Description
Empirical likelihood provides inferences whose validity does not depend on specifying a parametric model for the data. Because it uses a likelihood, the method has certain inherent advantages over resampling methods: it uses the data to determine the shape of the confidence regions, and it makes it easy to combined data from multiple sources. It al
Empirical Likelihood
Author: Art B. Owen
Publisher: CRC Press
ISBN: 1420036157
Category : Mathematics
Languages : en
Pages : 322
Book Description
Empirical likelihood provides inferences whose validity does not depend on specifying a parametric model for the data. Because it uses a likelihood, the method has certain inherent advantages over resampling methods: it uses the data to determine the shape of the confidence regions, and it makes it easy to combined data from multiple sources. It al
Publisher: CRC Press
ISBN: 1420036157
Category : Mathematics
Languages : en
Pages : 322
Book Description
Empirical likelihood provides inferences whose validity does not depend on specifying a parametric model for the data. Because it uses a likelihood, the method has certain inherent advantages over resampling methods: it uses the data to determine the shape of the confidence regions, and it makes it easy to combined data from multiple sources. It al
Empirical Likelihood in Econometrics
Econometric Applications of Maximum Likelihood Methods
Author: Jan Salomon Cramer
Publisher: CUP Archive
ISBN: 9780521378574
Category : Business & Economics
Languages : en
Pages : 232
Book Description
The advent of electronic computing permits the empirical analysis of economic models of far greater subtlety and rigour than before, when many interesting ideas were not followed up because the calculations involved made this impracticable. The estimation and testing of these more intricate models is usually based on the method of Maximum Likelihood, which is a well-established branch of mathematical statistics. Its use in econometrics has led to the development of a number of special techniques; the specific conditions of econometric research moreover demand certain changes in the interpretation of the basic argument. This book is a self-contained introduction to this field. It consists of three parts. The first deals with general features of Maximum Likelihood methods; the second with linear and nonlinear regression; and the third with discrete choice and related micro-economic models. Readers should already be familiar with elementary statistical theory, with applied econometric research papers, or with the literature on the mathematical basis of Maximum Likelihood theory. They can also try their hand at some advanced econometric research of their own.
Publisher: CUP Archive
ISBN: 9780521378574
Category : Business & Economics
Languages : en
Pages : 232
Book Description
The advent of electronic computing permits the empirical analysis of economic models of far greater subtlety and rigour than before, when many interesting ideas were not followed up because the calculations involved made this impracticable. The estimation and testing of these more intricate models is usually based on the method of Maximum Likelihood, which is a well-established branch of mathematical statistics. Its use in econometrics has led to the development of a number of special techniques; the specific conditions of econometric research moreover demand certain changes in the interpretation of the basic argument. This book is a self-contained introduction to this field. It consists of three parts. The first deals with general features of Maximum Likelihood methods; the second with linear and nonlinear regression; and the third with discrete choice and related micro-economic models. Readers should already be familiar with elementary statistical theory, with applied econometric research papers, or with the literature on the mathematical basis of Maximum Likelihood theory. They can also try their hand at some advanced econometric research of their own.
Econometric Modeling
Author: David F. Hendry
Publisher: Princeton University Press
ISBN: 1400845653
Category : Business & Economics
Languages : en
Pages : 378
Book Description
Econometric Modeling provides a new and stimulating introduction to econometrics, focusing on modeling. The key issue confronting empirical economics is to establish sustainable relationships that are both supported by data and interpretable from economic theory. The unified likelihood-based approach of this book gives students the required statistical foundations of estimation and inference, and leads to a thorough understanding of econometric techniques. David Hendry and Bent Nielsen introduce modeling for a range of situations, including binary data sets, multiple regression, and cointegrated systems. In each setting, a statistical model is constructed to explain the observed variation in the data, with estimation and inference based on the likelihood function. Substantive issues are always addressed, showing how both statistical and economic assumptions can be tested and empirical results interpreted. Important empirical problems such as structural breaks, forecasting, and model selection are covered, and Monte Carlo simulation is explained and applied. Econometric Modeling is a self-contained introduction for advanced undergraduate or graduate students. Throughout, data illustrate and motivate the approach, and are available for computer-based teaching. Technical issues from probability theory and statistical theory are introduced only as needed. Nevertheless, the approach is rigorous, emphasizing the coherent formulation, estimation, and evaluation of econometric models relevant for empirical research.
Publisher: Princeton University Press
ISBN: 1400845653
Category : Business & Economics
Languages : en
Pages : 378
Book Description
Econometric Modeling provides a new and stimulating introduction to econometrics, focusing on modeling. The key issue confronting empirical economics is to establish sustainable relationships that are both supported by data and interpretable from economic theory. The unified likelihood-based approach of this book gives students the required statistical foundations of estimation and inference, and leads to a thorough understanding of econometric techniques. David Hendry and Bent Nielsen introduce modeling for a range of situations, including binary data sets, multiple regression, and cointegrated systems. In each setting, a statistical model is constructed to explain the observed variation in the data, with estimation and inference based on the likelihood function. Substantive issues are always addressed, showing how both statistical and economic assumptions can be tested and empirical results interpreted. Important empirical problems such as structural breaks, forecasting, and model selection are covered, and Monte Carlo simulation is explained and applied. Econometric Modeling is a self-contained introduction for advanced undergraduate or graduate students. Throughout, data illustrate and motivate the approach, and are available for computer-based teaching. Technical issues from probability theory and statistical theory are introduced only as needed. Nevertheless, the approach is rigorous, emphasizing the coherent formulation, estimation, and evaluation of econometric models relevant for empirical research.
An Information Theoretic Approach to Econometrics
Author: George G. Judge
Publisher: Cambridge University Press
ISBN: 1139502492
Category : Business & Economics
Languages : en
Pages : 249
Book Description
This book is intended to provide the reader with a firm conceptual and empirical understanding of basic information-theoretic econometric models and methods. Because most data are observational, practitioners work with indirect noisy observations and ill-posed econometric models in the form of stochastic inverse problems. Consequently, traditional econometric methods in many cases are not applicable for answering many of the quantitative questions that analysts wish to ask. After initial chapters deal with parametric and semiparametric linear probability models, the focus turns to solving nonparametric stochastic inverse problems. In succeeding chapters, a family of power divergence measure-likelihood functions are introduced for a range of traditional and nontraditional econometric-model problems. Finally, within either an empirical maximum likelihood or loss context, Ron C. Mittelhammer and George G. Judge suggest a basis for choosing a member of the divergence family.
Publisher: Cambridge University Press
ISBN: 1139502492
Category : Business & Economics
Languages : en
Pages : 249
Book Description
This book is intended to provide the reader with a firm conceptual and empirical understanding of basic information-theoretic econometric models and methods. Because most data are observational, practitioners work with indirect noisy observations and ill-posed econometric models in the form of stochastic inverse problems. Consequently, traditional econometric methods in many cases are not applicable for answering many of the quantitative questions that analysts wish to ask. After initial chapters deal with parametric and semiparametric linear probability models, the focus turns to solving nonparametric stochastic inverse problems. In succeeding chapters, a family of power divergence measure-likelihood functions are introduced for a range of traditional and nontraditional econometric-model problems. Finally, within either an empirical maximum likelihood or loss context, Ron C. Mittelhammer and George G. Judge suggest a basis for choosing a member of the divergence family.
Empirical Likelihood Method in Survival Analysis
Author: Mai Zhou
Publisher: CRC Press
ISBN: 1466554932
Category : Mathematics
Languages : en
Pages : 221
Book Description
Empirical Likelihood Method in Survival Analysis explains how to use the empirical likelihood method for right censored survival data. The author uses R for calculating empirical likelihood and includes many worked out examples with the associated R code. The datasets and code are available for download on his website and CRAN. The book focuses on all the standard survival analysis topics treated with empirical likelihood, including hazard functions, cumulative distribution functions, analysis of the Cox model, and computation of empirical likelihood for censored data. It also covers semi-parametric accelerated failure time models, the optimality of confidence regions derived from empirical likelihood or plug-in empirical likelihood ratio tests, and several empirical likelihood confidence band results. While survival analysis is a classic area of statistical study, the empirical likelihood methodology has only recently been developed. Until now, just one book was available on empirical likelihood and most statistical software did not include empirical likelihood procedures. Addressing this shortfall, this book provides the functions to calculate the empirical likelihood ratio in survival analysis as well as functions related to the empirical likelihood analysis of the Cox regression model and other hazard regression models.
Publisher: CRC Press
ISBN: 1466554932
Category : Mathematics
Languages : en
Pages : 221
Book Description
Empirical Likelihood Method in Survival Analysis explains how to use the empirical likelihood method for right censored survival data. The author uses R for calculating empirical likelihood and includes many worked out examples with the associated R code. The datasets and code are available for download on his website and CRAN. The book focuses on all the standard survival analysis topics treated with empirical likelihood, including hazard functions, cumulative distribution functions, analysis of the Cox model, and computation of empirical likelihood for censored data. It also covers semi-parametric accelerated failure time models, the optimality of confidence regions derived from empirical likelihood or plug-in empirical likelihood ratio tests, and several empirical likelihood confidence band results. While survival analysis is a classic area of statistical study, the empirical likelihood methodology has only recently been developed. Until now, just one book was available on empirical likelihood and most statistical software did not include empirical likelihood procedures. Addressing this shortfall, this book provides the functions to calculate the empirical likelihood ratio in survival analysis as well as functions related to the empirical likelihood analysis of the Cox regression model and other hazard regression models.
Econometrics
Author: Fumio Hayashi
Publisher: Princeton University Press
ISBN: 1400823838
Category : Business & Economics
Languages : en
Pages : 708
Book Description
The most authoritative and comprehensive synthesis of modern econometrics available Econometrics provides first-year graduate students with a thoroughly modern introduction to the subject, covering all the standard material necessary for understanding the principal techniques of econometrics, from ordinary least squares through cointegration. The book is distinctive in developing both time-series and cross-section analysis fully, giving readers a unified framework for understanding and integrating results. Econometrics covers all the important topics in a succinct manner. All the estimation techniques that could possibly be taught in a first-year graduate course, except maximum likelihood, are treated as special cases of GMM (generalized methods of moments). Maximum likelihood estimators for a variety of models, such as probit and tobit, are collected in a separate chapter. This arrangement enables students to learn various estimation techniques in an efficient way. Virtually all the chapters include empirical applications drawn from labor economics, industrial organization, domestic and international finance, and macroeconomics. These empirical exercises provide students with hands-on experience applying the techniques covered. The exposition is rigorous yet accessible, requiring a working knowledge of very basic linear algebra and probability theory. All the results are stated as propositions so that students can see the points of the discussion and also the conditions under which those results hold. Most propositions are proved in the text. For students who intend to write a thesis on applied topics, the empirical applications in Econometrics are an excellent way to learn how to conduct empirical research. For theoretically inclined students, the no-compromise treatment of basic techniques is an ideal preparation for more advanced theory courses.
Publisher: Princeton University Press
ISBN: 1400823838
Category : Business & Economics
Languages : en
Pages : 708
Book Description
The most authoritative and comprehensive synthesis of modern econometrics available Econometrics provides first-year graduate students with a thoroughly modern introduction to the subject, covering all the standard material necessary for understanding the principal techniques of econometrics, from ordinary least squares through cointegration. The book is distinctive in developing both time-series and cross-section analysis fully, giving readers a unified framework for understanding and integrating results. Econometrics covers all the important topics in a succinct manner. All the estimation techniques that could possibly be taught in a first-year graduate course, except maximum likelihood, are treated as special cases of GMM (generalized methods of moments). Maximum likelihood estimators for a variety of models, such as probit and tobit, are collected in a separate chapter. This arrangement enables students to learn various estimation techniques in an efficient way. Virtually all the chapters include empirical applications drawn from labor economics, industrial organization, domestic and international finance, and macroeconomics. These empirical exercises provide students with hands-on experience applying the techniques covered. The exposition is rigorous yet accessible, requiring a working knowledge of very basic linear algebra and probability theory. All the results are stated as propositions so that students can see the points of the discussion and also the conditions under which those results hold. Most propositions are proved in the text. For students who intend to write a thesis on applied topics, the empirical applications in Econometrics are an excellent way to learn how to conduct empirical research. For theoretically inclined students, the no-compromise treatment of basic techniques is an ideal preparation for more advanced theory courses.
Econometric Foundations Pack with CD-ROM
Author: Ron Mittelhammer (Prof.)
Publisher: Cambridge University Press
ISBN: 9780521623940
Category : Business & Economics
Languages : en
Pages : 794
Book Description
The text and accompanying CD-ROM develop step by step a modern approach to econometric problems. They are aimed at talented upper-level undergraduates, graduate students, and professionals wishing to acquaint themselves with the pinciples and procedures for information processing and recovery from samples of economic data. The text fully provides an operational understanding of a rich set of estimation and inference tools, including tradional likelihood based and non-traditional non-likelihood based procedures, that can be used in conjuction with the computer to address economic problems.
Publisher: Cambridge University Press
ISBN: 9780521623940
Category : Business & Economics
Languages : en
Pages : 794
Book Description
The text and accompanying CD-ROM develop step by step a modern approach to econometric problems. They are aimed at talented upper-level undergraduates, graduate students, and professionals wishing to acquaint themselves with the pinciples and procedures for information processing and recovery from samples of economic data. The text fully provides an operational understanding of a rich set of estimation and inference tools, including tradional likelihood based and non-traditional non-likelihood based procedures, that can be used in conjuction with the computer to address economic problems.
The Statistical Analysis of Doubly Truncated Data
Author: Jacobo de Uña-Álvarez
Publisher: John Wiley & Sons
ISBN: 1119951372
Category : Medical
Languages : en
Pages : 196
Book Description
A thorough treatment of the statistical methods used to analyze doubly truncated data In The Statistical Analysis of Doubly Truncated Data, an expert team of statisticians delivers an up-to-date review of existing methods used to deal with randomly truncated data, with a focus on the challenging problem of random double truncation. The authors comprehensively introduce doubly truncated data before moving on to discussions of the latest developments in the field. The book offers readers examples with R code along with real data from astronomy, engineering, and the biomedical sciences to illustrate and highlight the methods described within. Linear regression models for doubly truncated responses are provided and the influence of the bandwidth in the performance of kernel-type estimators, as well as guidelines for the selection of the smoothing parameter, are explored. Fully nonparametric and semiparametric estimators are explored and illustrated with real data. R code for reproducing the data examples is also provided. The book also offers: A thorough introduction to the existing methods that deal with randomly truncated data Comprehensive explorations of linear regression models for doubly truncated responses Practical discussions of the influence of bandwidth in the performance of kernel-type estimators and guidelines for the selection of the smoothing parameter In-depth examinations of nonparametric and semiparametric estimators Perfect for statistical professionals with some background in mathematical statistics, biostatisticians, and mathematicians with an interest in survival analysis and epidemiology, The Statistical Analysis of Doubly Truncated Data is also an invaluable addition to the libraries of biomedical scientists and practitioners, as well as postgraduate students studying survival analysis.
Publisher: John Wiley & Sons
ISBN: 1119951372
Category : Medical
Languages : en
Pages : 196
Book Description
A thorough treatment of the statistical methods used to analyze doubly truncated data In The Statistical Analysis of Doubly Truncated Data, an expert team of statisticians delivers an up-to-date review of existing methods used to deal with randomly truncated data, with a focus on the challenging problem of random double truncation. The authors comprehensively introduce doubly truncated data before moving on to discussions of the latest developments in the field. The book offers readers examples with R code along with real data from astronomy, engineering, and the biomedical sciences to illustrate and highlight the methods described within. Linear regression models for doubly truncated responses are provided and the influence of the bandwidth in the performance of kernel-type estimators, as well as guidelines for the selection of the smoothing parameter, are explored. Fully nonparametric and semiparametric estimators are explored and illustrated with real data. R code for reproducing the data examples is also provided. The book also offers: A thorough introduction to the existing methods that deal with randomly truncated data Comprehensive explorations of linear regression models for doubly truncated responses Practical discussions of the influence of bandwidth in the performance of kernel-type estimators and guidelines for the selection of the smoothing parameter In-depth examinations of nonparametric and semiparametric estimators Perfect for statistical professionals with some background in mathematical statistics, biostatisticians, and mathematicians with an interest in survival analysis and epidemiology, The Statistical Analysis of Doubly Truncated Data is also an invaluable addition to the libraries of biomedical scientists and practitioners, as well as postgraduate students studying survival analysis.
Contemporary Multivariate Analysis and Design of Experiments
Author: Kaitai Fang
Publisher: World Scientific
ISBN: 9812567763
Category : Mathematics
Languages : en
Pages : 470
Book Description
Index. Subject index -- Author index
Publisher: World Scientific
ISBN: 9812567763
Category : Mathematics
Languages : en
Pages : 470
Book Description
Index. Subject index -- Author index