The Oxford Handbook of Economic Forecasting PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download The Oxford Handbook of Economic Forecasting PDF full book. Access full book title The Oxford Handbook of Economic Forecasting by Michael P. Clements. Download full books in PDF and EPUB format.

The Oxford Handbook of Economic Forecasting

The Oxford Handbook of Economic Forecasting PDF Author: Michael P. Clements
Publisher: OUP USA
ISBN: 0195398645
Category : Business & Economics
Languages : en
Pages : 732

Book Description
Greater data availability has been coupled with developments in statistical theory and economic theory to allow more elaborate and complicated models to be entertained. These include factor models, DSGE models, restricted vector autoregressions, and non-linear models.

The Oxford Handbook of Economic Forecasting

The Oxford Handbook of Economic Forecasting PDF Author: Michael P. Clements
Publisher: OUP USA
ISBN: 0195398645
Category : Business & Economics
Languages : en
Pages : 732

Book Description
Greater data availability has been coupled with developments in statistical theory and economic theory to allow more elaborate and complicated models to be entertained. These include factor models, DSGE models, restricted vector autoregressions, and non-linear models.

Dynamic Factor Models

Dynamic Factor Models PDF Author: Siem Jan Koopman
Publisher: Emerald Group Publishing
ISBN: 1785603523
Category : Business & Economics
Languages : en
Pages : 685

Book Description
This volume explores dynamic factor model specification, asymptotic and finite-sample behavior of parameter estimators, identification, frequentist and Bayesian estimation of the corresponding state space models, and applications.

Bayesian Multivariate Time Series Methods for Empirical Macroeconomics

Bayesian Multivariate Time Series Methods for Empirical Macroeconomics PDF Author: Gary Koop
Publisher: Now Publishers Inc
ISBN: 160198362X
Category : Business & Economics
Languages : en
Pages : 104

Book Description
Bayesian Multivariate Time Series Methods for Empirical Macroeconomics provides a survey of the Bayesian methods used in modern empirical macroeconomics. These models have been developed to address the fact that most questions of interest to empirical macroeconomists involve several variables and must be addressed using multivariate time series methods. Many different multivariate time series models have been used in macroeconomics, but Vector Autoregressive (VAR) models have been among the most popular. Bayesian Multivariate Time Series Methods for Empirical Macroeconomics reviews and extends the Bayesian literature on VARs, TVP-VARs and TVP-FAVARs with a focus on the practitioner. The authors go beyond simply defining each model, but specify how to use them in practice, discuss the advantages and disadvantages of each and offer tips on when and why each model can be used.

Handbook of Economic Forecasting

Handbook of Economic Forecasting PDF Author: G. Elliott
Publisher: Elsevier
ISBN: 0444513957
Category : Business & Economics
Languages : en
Pages : 1071

Book Description
Section headings in this handbook include: 'Forecasting Methodology; 'Forecasting Models'; 'Forecasting with Different Data Structures'; and 'Applications of Forecasting Methods.'.

Handbook of Macroeconomics

Handbook of Macroeconomics PDF Author: John B. Taylor
Publisher: Elsevier
ISBN: 0444594787
Category : Business & Economics
Languages : en
Pages : 1376

Book Description
Handbook of Macroeconomics surveys all major advances in macroeconomic scholarship since the publication of Volume 1 (1999), carefully distinguishing between empirical, theoretical, methodological, and policy issues. It courageously examines why existing models failed during the financial crisis, and also addresses well-deserved criticism head on. With contributions from the world's chief macroeconomists, its reevaluation of macroeconomic scholarship and speculation on its future constitute an investment worth making. - Serves a double role as a textbook for macroeconomics courses and as a gateway for students to the latest research - Acts as a one-of-a-kind resource as no major collections of macroeconomic essays have been published in the last decade

The Oxford Handbook of Bayesian Econometrics

The Oxford Handbook of Bayesian Econometrics PDF Author: John Geweke
Publisher: Oxford University Press
ISBN: 0191618268
Category : Business & Economics
Languages : en
Pages : 576

Book Description
Bayesian econometric methods have enjoyed an increase in popularity in recent years. Econometricians, empirical economists, and policymakers are increasingly making use of Bayesian methods. This handbook is a single source for researchers and policymakers wanting to learn about Bayesian methods in specialized fields, and for graduate students seeking to make the final step from textbook learning to the research frontier. It contains contributions by leading Bayesians on the latest developments in their specific fields of expertise. The volume provides broad coverage of the application of Bayesian econometrics in the major fields of economics and related disciplines, including macroeconomics, microeconomics, finance, and marketing. It reviews the state of the art in Bayesian econometric methodology, with chapters on posterior simulation and Markov chain Monte Carlo methods, Bayesian nonparametric techniques, and the specialized tools used by Bayesian time series econometricians such as state space models and particle filtering. It also includes chapters on Bayesian principles and methodology.

Dynamic Linear Models with R

Dynamic Linear Models with R PDF Author: Giovanni Petris
Publisher: Springer Science & Business Media
ISBN: 0387772383
Category : Mathematics
Languages : en
Pages : 258

Book Description
State space models have gained tremendous popularity in recent years in as disparate fields as engineering, economics, genetics and ecology. After a detailed introduction to general state space models, this book focuses on dynamic linear models, emphasizing their Bayesian analysis. Whenever possible it is shown how to compute estimates and forecasts in closed form; for more complex models, simulation techniques are used. A final chapter covers modern sequential Monte Carlo algorithms. The book illustrates all the fundamental steps needed to use dynamic linear models in practice, using R. Many detailed examples based on real data sets are provided to show how to set up a specific model, estimate its parameters, and use it for forecasting. All the code used in the book is available online. No prior knowledge of Bayesian statistics or time series analysis is required, although familiarity with basic statistics and R is assumed.

Bayesian Forecasting and Dynamic Models

Bayesian Forecasting and Dynamic Models PDF Author: Mike West
Publisher: Springer Science & Business Media
ISBN: 1475793650
Category : Mathematics
Languages : en
Pages : 720

Book Description
In this book we are concerned with Bayesian learning and forecast ing in dynamic environments. We describe the structure and theory of classes of dynamic models, and their uses in Bayesian forecasting. The principles, models and methods of Bayesian forecasting have been developed extensively during the last twenty years. This devel opment has involved thorough investigation of mathematical and sta tistical aspects of forecasting models and related techniques. With this has come experience with application in a variety of areas in commercial and industrial, scientific and socio-economic fields. In deed much of the technical development has been driven by the needs of forecasting practitioners. As a result, there now exists a relatively complete statistical and mathematical framework, although much of this is either not properly documented or not easily accessible. Our primary goals in writing this book have been to present our view of this approach to modelling and forecasting, and to provide a rea sonably complete text for advanced university students and research workers. The text is primarily intended for advanced undergraduate and postgraduate students in statistics and mathematics. In line with this objective we present thorough discussion of mathematical and statistical features of Bayesian analyses of dynamic models, with illustrations, examples and exercises in each Chapter.

Statistical Inference and Machine Learning for Big Data

Statistical Inference and Machine Learning for Big Data PDF Author: Mayer Alvo
Publisher: Springer Nature
ISBN: 3031067843
Category : Mathematics
Languages : en
Pages : 442

Book Description
This book presents a variety of advanced statistical methods at a level suitable for advanced undergraduate and graduate students as well as for others interested in familiarizing themselves with these important subjects. It proceeds to illustrate these methods in the context of real-life applications in a variety of areas such as genetics, medicine, and environmental problems. The book begins in Part I by outlining various data types and by indicating how these are normally represented graphically and subsequently analyzed. In Part II, the basic tools in probability and statistics are introduced with special reference to symbolic data analysis. The most useful and relevant results pertinent to this book are retained. In Part III, the focus is on the tools of machine learning whereas in Part IV the computational aspects of BIG DATA are presented. This book would serve as a handy desk reference for statistical methods at the undergraduate and graduate level as well as be useful in courses which aim to provide an overview of modern statistics and its applications.

Bayesian Econometric Methods

Bayesian Econometric Methods PDF Author: Joshua Chan
Publisher: Cambridge University Press
ISBN: 1108423388
Category : Business & Economics
Languages : en
Pages : 491

Book Description
Illustrates Bayesian theory and application through a series of exercises in question and answer format.