Author: Manan Suri
Publisher: Springer
ISBN: 813223703X
Category : Technology & Engineering
Languages : en
Pages : 217
Book Description
This book covers all major aspects of cutting-edge research in the field of neuromorphic hardware engineering involving emerging nanoscale devices. Special emphasis is given to leading works in hybrid low-power CMOS-Nanodevice design. The book offers readers a bidirectional (top-down and bottom-up) perspective on designing efficient bio-inspired hardware. At the nanodevice level, it focuses on various flavors of emerging resistive memory (RRAM) technology. At the algorithm level, it addresses optimized implementations of supervised and stochastic learning paradigms such as: spike-time-dependent plasticity (STDP), long-term potentiation (LTP), long-term depression (LTD), extreme learning machines (ELM) and early adoptions of restricted Boltzmann machines (RBM) to name a few. The contributions discuss system-level power/energy/parasitic trade-offs, and complex real-world applications. The book is suited for both advanced researchers and students interested in the field.
Advances in Neuromorphic Hardware Exploiting Emerging Nanoscale Devices
Author: Manan Suri
Publisher: Springer
ISBN: 813223703X
Category : Technology & Engineering
Languages : en
Pages : 217
Book Description
This book covers all major aspects of cutting-edge research in the field of neuromorphic hardware engineering involving emerging nanoscale devices. Special emphasis is given to leading works in hybrid low-power CMOS-Nanodevice design. The book offers readers a bidirectional (top-down and bottom-up) perspective on designing efficient bio-inspired hardware. At the nanodevice level, it focuses on various flavors of emerging resistive memory (RRAM) technology. At the algorithm level, it addresses optimized implementations of supervised and stochastic learning paradigms such as: spike-time-dependent plasticity (STDP), long-term potentiation (LTP), long-term depression (LTD), extreme learning machines (ELM) and early adoptions of restricted Boltzmann machines (RBM) to name a few. The contributions discuss system-level power/energy/parasitic trade-offs, and complex real-world applications. The book is suited for both advanced researchers and students interested in the field.
Publisher: Springer
ISBN: 813223703X
Category : Technology & Engineering
Languages : en
Pages : 217
Book Description
This book covers all major aspects of cutting-edge research in the field of neuromorphic hardware engineering involving emerging nanoscale devices. Special emphasis is given to leading works in hybrid low-power CMOS-Nanodevice design. The book offers readers a bidirectional (top-down and bottom-up) perspective on designing efficient bio-inspired hardware. At the nanodevice level, it focuses on various flavors of emerging resistive memory (RRAM) technology. At the algorithm level, it addresses optimized implementations of supervised and stochastic learning paradigms such as: spike-time-dependent plasticity (STDP), long-term potentiation (LTP), long-term depression (LTD), extreme learning machines (ELM) and early adoptions of restricted Boltzmann machines (RBM) to name a few. The contributions discuss system-level power/energy/parasitic trade-offs, and complex real-world applications. The book is suited for both advanced researchers and students interested in the field.
Emerging Memory Technologies
Author: Yuan Xie
Publisher: Springer Science & Business Media
ISBN: 144199551X
Category : Technology & Engineering
Languages : en
Pages : 321
Book Description
This book explores the design implications of emerging, non-volatile memory (NVM) technologies on future computer memory hierarchy architecture designs. Since NVM technologies combine the speed of SRAM, the density of DRAM, and the non-volatility of Flash memory, they are very attractive as the basis for future universal memories. This book provides a holistic perspective on the topic, covering modeling, design, architecture and applications. The practical information included in this book will enable designers to exploit emerging memory technologies to improve significantly the performance/power/reliability of future, mainstream integrated circuits.
Publisher: Springer Science & Business Media
ISBN: 144199551X
Category : Technology & Engineering
Languages : en
Pages : 321
Book Description
This book explores the design implications of emerging, non-volatile memory (NVM) technologies on future computer memory hierarchy architecture designs. Since NVM technologies combine the speed of SRAM, the density of DRAM, and the non-volatility of Flash memory, they are very attractive as the basis for future universal memories. This book provides a holistic perspective on the topic, covering modeling, design, architecture and applications. The practical information included in this book will enable designers to exploit emerging memory technologies to improve significantly the performance/power/reliability of future, mainstream integrated circuits.
Applications of Emerging Memory Technology
Author: Manan Suri
Publisher: Springer
ISBN: 9811383790
Category : Technology & Engineering
Languages : en
Pages : 244
Book Description
The book intends to bring under one roof research work of leading groups from across the globe working on advanced applications of emerging memory technology nanodevices. The applications dealt in the text will be beyond conventional storage application of semiconductor memory devices. The text will deal with material and device physical principles that give rise to interesting characteristics and phenomena in the emerging memory device that can be exploited for a wide variety of applications. Applications covered will include system-centric cases such as – caches, NVSRAM, NVTCAM, Hybrid CMOS-RRAM circuits for: Machine Learning, In-Memory Computing, Hardware Security - RNG/PUF, Biosensing and other misc beyond storage applications. The book is envisioned for multi-purpose use as a textbook in advanced UG/PG courses and a research text for scientists working in the domain.
Publisher: Springer
ISBN: 9811383790
Category : Technology & Engineering
Languages : en
Pages : 244
Book Description
The book intends to bring under one roof research work of leading groups from across the globe working on advanced applications of emerging memory technology nanodevices. The applications dealt in the text will be beyond conventional storage application of semiconductor memory devices. The text will deal with material and device physical principles that give rise to interesting characteristics and phenomena in the emerging memory device that can be exploited for a wide variety of applications. Applications covered will include system-centric cases such as – caches, NVSRAM, NVTCAM, Hybrid CMOS-RRAM circuits for: Machine Learning, In-Memory Computing, Hardware Security - RNG/PUF, Biosensing and other misc beyond storage applications. The book is envisioned for multi-purpose use as a textbook in advanced UG/PG courses and a research text for scientists working in the domain.
Nanoscale Memory Repair
Author: Masashi Horiguchi
Publisher: Springer Science & Business Media
ISBN: 1441979581
Category : Technology & Engineering
Languages : en
Pages : 221
Book Description
Yield and reliability of memories have degraded with device and voltage scaling in the nano-scale era, due to ever-increasing hard/soft errors and device parameter variations. This book systematically describes these yield and reliability issues in terms of mathematics and engineering, as well as an array of repair techniques, based on the authors’ long careers in developing memories and low-voltage CMOS circuits. Nanoscale Memory Repair gives a detailed explanation of the various yield models and calculations, as well as various, practical logic and circuits that are critical for higher yield and reliability.
Publisher: Springer Science & Business Media
ISBN: 1441979581
Category : Technology & Engineering
Languages : en
Pages : 221
Book Description
Yield and reliability of memories have degraded with device and voltage scaling in the nano-scale era, due to ever-increasing hard/soft errors and device parameter variations. This book systematically describes these yield and reliability issues in terms of mathematics and engineering, as well as an array of repair techniques, based on the authors’ long careers in developing memories and low-voltage CMOS circuits. Nanoscale Memory Repair gives a detailed explanation of the various yield models and calculations, as well as various, practical logic and circuits that are critical for higher yield and reliability.
Advanced Memory Technology
Author: Ye Zhou
Publisher: Royal Society of Chemistry
ISBN: 1839169958
Category : Technology & Engineering
Languages : en
Pages : 641
Book Description
Advanced memory technologies are impacting the information era, representing a vibrant research area of huge interest in the electronics industry. The demand for data storage, computing performance and energy efficiency is increasing exponentially and will exceed the capabilities of current information technologies. Alternatives to traditional silicon technology and novel memory principles are expected to meet the need of modern data-intensive applications such as “big data” and artificial intelligence (AI). Functional materials or methodologies may find a key role in building novel, high speed and low power consumption computing and data storage systems. This book covers functional materials and devices in the data storage areas, alongside electronic devices with new possibilities for future computing, from neuromorphic next generation AI to in-memory computing. Summarizing different memory materials and devices to emphasize the future applications, graduate students and researchers can systematically learn and understand the design, materials characteristics, device operation principles, specialized device applications and mechanisms of the latest reported memory materials and devices.
Publisher: Royal Society of Chemistry
ISBN: 1839169958
Category : Technology & Engineering
Languages : en
Pages : 641
Book Description
Advanced memory technologies are impacting the information era, representing a vibrant research area of huge interest in the electronics industry. The demand for data storage, computing performance and energy efficiency is increasing exponentially and will exceed the capabilities of current information technologies. Alternatives to traditional silicon technology and novel memory principles are expected to meet the need of modern data-intensive applications such as “big data” and artificial intelligence (AI). Functional materials or methodologies may find a key role in building novel, high speed and low power consumption computing and data storage systems. This book covers functional materials and devices in the data storage areas, alongside electronic devices with new possibilities for future computing, from neuromorphic next generation AI to in-memory computing. Summarizing different memory materials and devices to emphasize the future applications, graduate students and researchers can systematically learn and understand the design, materials characteristics, device operation principles, specialized device applications and mechanisms of the latest reported memory materials and devices.
Emerging Technology and Architecture for Big-data Analytics
Author: Anupam Chattopadhyay
Publisher: Springer
ISBN: 3319548409
Category : Technology & Engineering
Languages : en
Pages : 332
Book Description
This book describes the current state of the art in big-data analytics, from a technology and hardware architecture perspective. The presentation is designed to be accessible to a broad audience, with general knowledge of hardware design and some interest in big-data analytics. Coverage includes emerging technology and devices for data-analytics, circuit design for data-analytics, and architecture and algorithms to support data-analytics. Readers will benefit from the realistic context used by the authors, which demonstrates what works, what doesn’t work, and what are the fundamental problems, solutions, upcoming challenges and opportunities. Provides a single-source reference to hardware architectures for big-data analytics; Covers various levels of big-data analytics hardware design abstraction and flow, from device, to circuits and systems; Demonstrates how non-volatile memory (NVM) based hardware platforms can be a viable solution to existing challenges in hardware architecture for big-data analytics.
Publisher: Springer
ISBN: 3319548409
Category : Technology & Engineering
Languages : en
Pages : 332
Book Description
This book describes the current state of the art in big-data analytics, from a technology and hardware architecture perspective. The presentation is designed to be accessible to a broad audience, with general knowledge of hardware design and some interest in big-data analytics. Coverage includes emerging technology and devices for data-analytics, circuit design for data-analytics, and architecture and algorithms to support data-analytics. Readers will benefit from the realistic context used by the authors, which demonstrates what works, what doesn’t work, and what are the fundamental problems, solutions, upcoming challenges and opportunities. Provides a single-source reference to hardware architectures for big-data analytics; Covers various levels of big-data analytics hardware design abstraction and flow, from device, to circuits and systems; Demonstrates how non-volatile memory (NVM) based hardware platforms can be a viable solution to existing challenges in hardware architecture for big-data analytics.
Emerging Non-Volatile Memories
Author: Seungbum Hong
Publisher: Springer
ISBN: 1489975373
Category : Technology & Engineering
Languages : en
Pages : 280
Book Description
This book is an introduction to the fundamentals of emerging non-volatile memories and provides an overview of future trends in the field. Readers will find coverage of seven important memory technologies, including Ferroelectric Random Access Memory (FeRAM), Ferromagnetic RAM (FMRAM), Multiferroic RAM (MFRAM), Phase-Change Memories (PCM), Oxide-based Resistive RAM (RRAM), Probe Storage, and Polymer Memories. Chapters are structured to reflect diffusions and clashes between different topics. Emerging Non-Volatile Memories is an ideal book for graduate students, faculty, and professionals working in the area of non-volatile memory. This book also: Covers key memory technologies, including Ferroelectric Random Access Memory (FeRAM), Ferromagnetic RAM (FMRAM), and Multiferroic RAM (MFRAM), among others. Provides an overview of non-volatile memory fundamentals. Broadens readers’ understanding of future trends in non-volatile memories.
Publisher: Springer
ISBN: 1489975373
Category : Technology & Engineering
Languages : en
Pages : 280
Book Description
This book is an introduction to the fundamentals of emerging non-volatile memories and provides an overview of future trends in the field. Readers will find coverage of seven important memory technologies, including Ferroelectric Random Access Memory (FeRAM), Ferromagnetic RAM (FMRAM), Multiferroic RAM (MFRAM), Phase-Change Memories (PCM), Oxide-based Resistive RAM (RRAM), Probe Storage, and Polymer Memories. Chapters are structured to reflect diffusions and clashes between different topics. Emerging Non-Volatile Memories is an ideal book for graduate students, faculty, and professionals working in the area of non-volatile memory. This book also: Covers key memory technologies, including Ferroelectric Random Access Memory (FeRAM), Ferromagnetic RAM (FMRAM), and Multiferroic RAM (MFRAM), among others. Provides an overview of non-volatile memory fundamentals. Broadens readers’ understanding of future trends in non-volatile memories.
Emerging Nanoelectronic Devices
Author: An Chen
Publisher: John Wiley & Sons
ISBN: 1118447743
Category : Technology & Engineering
Languages : en
Pages : 570
Book Description
Emerging Nanoelectronic Devices focuses on the future direction of semiconductor and emerging nanoscale device technology. As the dimensional scaling of CMOS approaches its limits, alternate information processing devices and microarchitectures are being explored to sustain increasing functionality at decreasing cost into the indefinite future. This is driving new paradigms of information processing enabled by innovative new devices, circuits, and architectures, necessary to support an increasingly interconnected world through a rapidly evolving internet. This original title provides a fresh perspective on emerging research devices in 26 up to date chapters written by the leading researchers in their respective areas. It supplements and extends the work performed by the Emerging Research Devices working group of the International Technology Roadmap for Semiconductors (ITRS). Key features: • Serves as an authoritative tutorial on innovative devices and architectures that populate the dynamic world of “Beyond CMOS” technologies. • Provides a realistic assessment of the strengths, weaknesses and key unknowns associated with each technology. • Suggests guidelines for the directions of future development of each technology. • Emphasizes physical concepts over mathematical development. • Provides an essential resource for students, researchers and practicing engineers.
Publisher: John Wiley & Sons
ISBN: 1118447743
Category : Technology & Engineering
Languages : en
Pages : 570
Book Description
Emerging Nanoelectronic Devices focuses on the future direction of semiconductor and emerging nanoscale device technology. As the dimensional scaling of CMOS approaches its limits, alternate information processing devices and microarchitectures are being explored to sustain increasing functionality at decreasing cost into the indefinite future. This is driving new paradigms of information processing enabled by innovative new devices, circuits, and architectures, necessary to support an increasingly interconnected world through a rapidly evolving internet. This original title provides a fresh perspective on emerging research devices in 26 up to date chapters written by the leading researchers in their respective areas. It supplements and extends the work performed by the Emerging Research Devices working group of the International Technology Roadmap for Semiconductors (ITRS). Key features: • Serves as an authoritative tutorial on innovative devices and architectures that populate the dynamic world of “Beyond CMOS” technologies. • Provides a realistic assessment of the strengths, weaknesses and key unknowns associated with each technology. • Suggests guidelines for the directions of future development of each technology. • Emphasizes physical concepts over mathematical development. • Provides an essential resource for students, researchers and practicing engineers.
Ultra-Low Voltage Nano-Scale Memories
Author: Kiyoo Itoh
Publisher: Springer Science & Business Media
ISBN: 0387688536
Category : Technology & Engineering
Languages : en
Pages : 351
Book Description
Ultra-low voltage large-scale integrated circuits (LSIs) in nano-scale technologies are needed both to meet the needs of a rapidly growing mobile cell phone market and to offset a significant increase in the power dissipation of high-end microprocessor units. The goal of this book is to provide a detailed explanation of the state-of-the-art nanometer and sub-1-V memory LSIs that are playing decisive roles in power conscious systems. Emerging problems between the device, circuit, and system levels are systematically discussed in terms of reliable high-speed operations of memory cells and peripheral logic circuits. The effectiveness of solutions at device and circuit levels is also described at length through clarifying noise components in an array, and even essential differences in ultra-low voltage operations between DRAMs and SRAMs.
Publisher: Springer Science & Business Media
ISBN: 0387688536
Category : Technology & Engineering
Languages : en
Pages : 351
Book Description
Ultra-low voltage large-scale integrated circuits (LSIs) in nano-scale technologies are needed both to meet the needs of a rapidly growing mobile cell phone market and to offset a significant increase in the power dissipation of high-end microprocessor units. The goal of this book is to provide a detailed explanation of the state-of-the-art nanometer and sub-1-V memory LSIs that are playing decisive roles in power conscious systems. Emerging problems between the device, circuit, and system levels are systematically discussed in terms of reliable high-speed operations of memory cells and peripheral logic circuits. The effectiveness of solutions at device and circuit levels is also described at length through clarifying noise components in an array, and even essential differences in ultra-low voltage operations between DRAMs and SRAMs.
Embedded Memories for Nano-Scale VLSIs
Author: Kevin Zhang
Publisher: Springer
ISBN: 9781441946942
Category : Technology & Engineering
Languages : en
Pages : 0
Book Description
Kevin Zhang Advancement of semiconductor technology has driven the rapid growth of very large scale integrated (VLSI) systems for increasingly broad applications, incl- ing high-end and mobile computing, consumer electronics such as 3D gaming, multi-function or smart phone, and various set-top players and ubiquitous sensor and medical devices. To meet the increasing demand for higher performance and lower power consumption in many different system applications, it is often required to have a large amount of on-die or embedded memory to support the need of data bandwidth in a system. The varieties of embedded memory in a given system have alsobecome increasingly more complex, ranging fromstatictodynamic and volatile to nonvolatile. Among embedded memories, six-transistor (6T)-based static random access memory (SRAM) continues to play a pivotal role in nearly all VLSI systems due to its superior speed and full compatibility with logic process technology. But as the technology scaling continues, SRAM design is facing severe challenge in mainta- ing suf?cient cell stability margin under relentless area scaling. Meanwhile, rapid expansion in mobile application, including new emerging application in sensor and medical devices, requires far more aggressive voltage scaling to meet very str- gent power constraint. Many innovative circuit topologies and techniques have been extensively explored in recent years to address these challenges.
Publisher: Springer
ISBN: 9781441946942
Category : Technology & Engineering
Languages : en
Pages : 0
Book Description
Kevin Zhang Advancement of semiconductor technology has driven the rapid growth of very large scale integrated (VLSI) systems for increasingly broad applications, incl- ing high-end and mobile computing, consumer electronics such as 3D gaming, multi-function or smart phone, and various set-top players and ubiquitous sensor and medical devices. To meet the increasing demand for higher performance and lower power consumption in many different system applications, it is often required to have a large amount of on-die or embedded memory to support the need of data bandwidth in a system. The varieties of embedded memory in a given system have alsobecome increasingly more complex, ranging fromstatictodynamic and volatile to nonvolatile. Among embedded memories, six-transistor (6T)-based static random access memory (SRAM) continues to play a pivotal role in nearly all VLSI systems due to its superior speed and full compatibility with logic process technology. But as the technology scaling continues, SRAM design is facing severe challenge in mainta- ing suf?cient cell stability margin under relentless area scaling. Meanwhile, rapid expansion in mobile application, including new emerging application in sensor and medical devices, requires far more aggressive voltage scaling to meet very str- gent power constraint. Many innovative circuit topologies and techniques have been extensively explored in recent years to address these challenges.