ELM-Induced Plasma Wall Interactions in DIII-D. PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download ELM-Induced Plasma Wall Interactions in DIII-D. PDF full book. Access full book title ELM-Induced Plasma Wall Interactions in DIII-D. by . Download full books in PDF and EPUB format.

ELM-Induced Plasma Wall Interactions in DIII-D.

ELM-Induced Plasma Wall Interactions in DIII-D. PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 14

Book Description
Intense transient fluxes of particles and heat to the main chamber components induced by edge localized modes (ELMs) are of serious concern for ITER. In DIII-D, plasma interaction with the outboard chamber wall is studied using Langmuir probes and optical diagnostics including a fast framing camera. Camera data shows that ELMs feature helical filamentary structures localized at the low field side of the plasma and aligned with the local magnetic field. During the nonlinear phase of an ELM, multiple filaments are ejected from the plasma edge and propagate towards the outboard wall with velocities of 0.5-0.7 km/s. When reaching the wall, filaments result in 'hot spots'--regions of local intense plasma-material interaction (PMI) where the peak incident particle and heat fluxes are up to 2 orders of magnitude higher than those between ELMs. This interaction pattern has a complicated geometry and is neither toroidally nor poloidally symmetric. In low density/collisionality H-mode discharges, PMI at the outboard wall is almost entirely due to ELMs. In high density/collisionality discharges, contributions of ELMs and inter-ELM periods to PMI at the wall are comparable. A Midplane Material Evaluation Station (MiMES) has been recently installed in order to conduct in situ measurements of erosion/redeposition at the outboard chamber wall, including those caused by ELMs.

ELM-Induced Plasma Wall Interactions in DIII-D.

ELM-Induced Plasma Wall Interactions in DIII-D. PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 14

Book Description
Intense transient fluxes of particles and heat to the main chamber components induced by edge localized modes (ELMs) are of serious concern for ITER. In DIII-D, plasma interaction with the outboard chamber wall is studied using Langmuir probes and optical diagnostics including a fast framing camera. Camera data shows that ELMs feature helical filamentary structures localized at the low field side of the plasma and aligned with the local magnetic field. During the nonlinear phase of an ELM, multiple filaments are ejected from the plasma edge and propagate towards the outboard wall with velocities of 0.5-0.7 km/s. When reaching the wall, filaments result in 'hot spots'--regions of local intense plasma-material interaction (PMI) where the peak incident particle and heat fluxes are up to 2 orders of magnitude higher than those between ELMs. This interaction pattern has a complicated geometry and is neither toroidally nor poloidally symmetric. In low density/collisionality H-mode discharges, PMI at the outboard wall is almost entirely due to ELMs. In high density/collisionality discharges, contributions of ELMs and inter-ELM periods to PMI at the wall are comparable. A Midplane Material Evaluation Station (MiMES) has been recently installed in order to conduct in situ measurements of erosion/redeposition at the outboard chamber wall, including those caused by ELMs.

ELM-Induced Plasma Transport in the DIII-D SOL.

ELM-Induced Plasma Transport in the DIII-D SOL. PDF Author: S. Allen
Publisher:
ISBN:
Category :
Languages : en
Pages : 4

Book Description
High temporal and spatial resolution measurements in the boundary of the DIII-D tokamak show that edge localized modes (ELMs) are composed of fast bursts of hot, dense plasma that travel radially starting at the separatrix at {approx}450 m/s and rotate in the scrape off layer (SOL), convecting particles and energy to the SOL and walls. The temperature and density in the ELM plasma initially correspond to those at the top of the density pedestal but decay with radius in the SOL. The temperature decay length ({approx}1.2-1.5 cm) is much shorter than the density decay length ({approx}3-8 cm), which in turn decreases with increasing pedestal density. The local particle and energy flux at the wall during the bursts are 10-50% ({approx} 1-2 x 10{sup 21} m{sup -2} s{sup -1}) and 1-2% ({approx} 20-30 kW/m{sup 2}) respectively of the LCFS average fluxes, indicating that particles are transported radially much more efficiently than heat.

Effects of Particle Fueling and Plasma Wall Interactions on DIII-D Discharges

Effects of Particle Fueling and Plasma Wall Interactions on DIII-D Discharges PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 55

Book Description
DIII-D has successfully operated with an all-graphite first wall, including the first observations of VH-mode without boronization. A major goal of this, and other recent upgrades, was to control impurity influxes and hydrogenic fueling. Graphite tiles were carefully pre-conditioned, first by ex situ preparation and then by baking and helium glow conditioning. No deuterium or hydrogen was used until tokamak operation commenced. With the all graphite wall, both impurity and deuterium influxes during tokamak discharges were lower than previous boronized discharges; central nickel impurity line radiation, NiXXV and NiXXVI, was an order of magnitude lower than previous discharges during the ELM free beam heated phase. The effect of reduced particle fueling on plasma performance, particularly H- and VH-mode discharges, will be presented.

Far SOL Transport and Main Wall Plasma Interaction in DIII-D.

Far SOL Transport and Main Wall Plasma Interaction in DIII-D. PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 11

Book Description
Far scrape-off layer (SOL) and near-wall plasma parameters in DIII-D depend strongly on the discharge parameters and confinement regime. In L-mode discharges cross-field transport increases with the average discharge density and flattens far SOL profiles, thus increasing plasma-wall contact. In H-mode between edge localized modes (ELMs), plasma-wall contact is generally weaker than in L-mode. During ELMs plasma fluxes to the wall increase to, or above the L-mode levels. Depending on the discharge conditions ELMs are responsible for 30-90% of the ion flux to the outboard chamber wall. Cross-field fluxes in far SOL are dominated by large amplitude intermittent transport events that may propagate all the way to the outer wall and cause sputtering. A Divertor Material Evaluation System (DiMES) probe containing samples of several ITER-relevant materials including carbon, beryllium and tungsten was exposed to a series of upper single null (USN) discharges as a proxy to measure the first wall erosion.

The Plasma Boundary of Magnetic Fusion Devices

The Plasma Boundary of Magnetic Fusion Devices PDF Author: P.C Stangeby
Publisher: CRC Press
ISBN: 9780750305594
Category : Science
Languages : en
Pages : 738

Book Description
The Plasma Boundary of Magnetic Fusion Devices introduces the physics of the plasma boundary region, including plasma-surface interactions, with an emphasis on those occurring in magnetically confined fusion plasmas. The book covers plasma-surface interaction, Debye sheaths, sputtering, scrape-off layers, plasma impurities, recycling and control, 1D and 2D fluid and kinetic modeling of particle transport, plasma properties at the edge, diverter and limiter physics, and control of the plasma boundary. Divided into three parts, the book begins with Part 1, an introduction to the plasma boundary. The derivations are heuristic and worked problems help crystallize physical intuition, which is emphasized throughout. Part 2 provides an introduction to methods of modeling the plasma edge region and for interpreting computer code results. Part 3 presents a collection of essays on currently active research hot topics. With an extensive bibliography and index, this book is an invaluable first port-of-call for researchers interested in plasma-surface interactions.

Far SOL Transport and Main Wall Plasma Interaction in DIII-D.

Far SOL Transport and Main Wall Plasma Interaction in DIII-D. PDF Author: J. G. Watkins
Publisher:
ISBN:
Category :
Languages : en
Pages : 11

Book Description


Theory of Fusion Plasmas

Theory of Fusion Plasmas PDF Author: Olivier Sauter
Publisher: American Institute of Physics
ISBN: 9780735406001
Category : Science
Languages : en
Pages : 400

Book Description
The Joint Varenna-Lausanne International Workshop on Theory of Fusion Plasmas takes place every other year in a place particularly favorable for informal and in depth discussions. Invited and contributed papers present state-of-the art researches in theoretical plasma physics, covering all domains relevant to fusion plasmas. This workshop always allows a fruitful mix of experienced researchers and students, to allow for a better understanding of the key theoretical physics models and applications, such as: Theoretical issues related to burning plasmas; Anomalous Transport (Turbulence, Coherent Structures, Microinstabilities) RF Heating and Current Drive; Macroinstabilities; Plasma-Edge Physics and Divertors; Fast particles instabilities.

THE ROLE OF MAGNETIC BALANCE ON THE POLOIDAL DISTRIBUTION OF ELM-INDUCED PEAK PARTICLE FLUX AT THE DIVERTOR TARGETS IN DIII-D.

THE ROLE OF MAGNETIC BALANCE ON THE POLOIDAL DISTRIBUTION OF ELM-INDUCED PEAK PARTICLE FLUX AT THE DIVERTOR TARGETS IN DIII-D. PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 9

Book Description
Edge localized modes (ELMs) are commonly observed in high energy confinement, tokamak plasmas and are thought to be caused by magnetohydrodynamic instabilities driven by the steep pressure gradient and the current in the plasma edge region. Our data show that the divertor magnetic balance, i.e., the degree to which the plasma topology resembles a single-null (SN) or a double-null (DN), strongly determines where particle pulses driven by ballooning instabilities at the plasma edge are distributed to surrounding vacuum vessel surfaces. These data also support the conclusions drawn from the stability analysis that ELMs are generated almost entirely on the outboard side of the main plasma.

Resistive Wall Modes and Plasma Rotation in DIII-D.

Resistive Wall Modes and Plasma Rotation in DIII-D. PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 7

Book Description
A271 RESISTIVE WALL MODES AND PLASMA ROTATION IN DIII-D. The stabilization of the resistive wall mode (RWM) by toroidal plasma rotation has been demonstrated in neutral beam heated DIII-D discharges for values of [beta] up to 70% above the no-wall stability limit. The stabilizing effect of plasma rotation is explained by assuming some dissipation, which is caused by the rapid plasma flow through a perturbed magnetic field. Sufficient plasma rotation is predicted to extend the operating regime of tokamaks from the conventional no-wall [beta] limit up to the ideal wall [beta] limit. While plasma rotation has a stabilizing effect on the RWM, a finite amplitude RWM also increases the drag on the plasma, which leads to a non-linear interaction between the RWM and the plasma rotation. A good understanding of the underlying dissipation mechanism is crucial for reliable predictions of the plasma rotation which will be required for wall-stabilization in a burning-plasma experiment. In order to measure the stabilizing effect of plasma rotation on the RWM the technique of active MHD spectroscopy, which was previously applied to MHD modes at frequencies above 10 kHz, is extended to frequencies of a few Hz.

Plasma Science

Plasma Science PDF Author: National Academies of Sciences Engineering and Medicine
Publisher:
ISBN: 9780309677608
Category :
Languages : en
Pages : 291

Book Description
Plasma Science and Engineering transforms fundamental scientific research into powerful societal applications, from materials processing and healthcare to forecasting space weather. Plasma Science: Enabling Technology, Sustainability, Security and Exploration discusses the importance of plasma research, identifies important grand challenges for the next decade, and makes recommendations on funding and workforce. This publication will help federal agencies, policymakers, and academic leadership understand the importance of plasma research and make informed decisions about plasma science funding, workforce, and research directions.