Author: Naum Ilʹich Akhiezer
Publisher: American Mathematical Soc.
ISBN: 9780821809006
Category : Mathematics
Languages : en
Pages : 237
Book Description
Presents the theory of elliptic functions and its applications. Suitable primarily for engineers who work with elliptic functions, this work is also intended for those with background in the elements of mathematical analysis and the theory of functions contained in the first two years of mathematics and physics courses at the college level.
Elements of the Theory of Elliptic Functions
Author: Naum Ilʹich Akhiezer
Publisher: American Mathematical Soc.
ISBN: 9780821809006
Category : Mathematics
Languages : en
Pages : 237
Book Description
Presents the theory of elliptic functions and its applications. Suitable primarily for engineers who work with elliptic functions, this work is also intended for those with background in the elements of mathematical analysis and the theory of functions contained in the first two years of mathematics and physics courses at the college level.
Publisher: American Mathematical Soc.
ISBN: 9780821809006
Category : Mathematics
Languages : en
Pages : 237
Book Description
Presents the theory of elliptic functions and its applications. Suitable primarily for engineers who work with elliptic functions, this work is also intended for those with background in the elements of mathematical analysis and the theory of functions contained in the first two years of mathematics and physics courses at the college level.
Elliptic Functions
Author: Komaravolu Chandrasekharan
Publisher: Springer Science & Business Media
ISBN: 3642522440
Category : Mathematics
Languages : en
Pages : 199
Book Description
This book has grown out of a course of lectures on elliptic functions, given in German, at the Swiss Federal Institute of Technology, Zurich, during the summer semester of 1982. Its aim is to give some idea of the theory of elliptic functions, and of its close connexion with theta-functions and modular functions, and to show how it provides an analytic approach to the solution of some classical problems in the theory of numbers. It comprises eleven chapters. The first seven are function-theoretic, and the next four concern arithmetical applications. There are Notes at the end of every chapter, which contain references to the literature, comments on the text, and on the ramifications, old and new, of the problems dealt with, some of them extending into cognate fields. The treatment is self-contained, and makes no special demand on the reader's knowledge beyond the elements of complex analysis in one variable, and of group theory.
Publisher: Springer Science & Business Media
ISBN: 3642522440
Category : Mathematics
Languages : en
Pages : 199
Book Description
This book has grown out of a course of lectures on elliptic functions, given in German, at the Swiss Federal Institute of Technology, Zurich, during the summer semester of 1982. Its aim is to give some idea of the theory of elliptic functions, and of its close connexion with theta-functions and modular functions, and to show how it provides an analytic approach to the solution of some classical problems in the theory of numbers. It comprises eleven chapters. The first seven are function-theoretic, and the next four concern arithmetical applications. There are Notes at the end of every chapter, which contain references to the literature, comments on the text, and on the ramifications, old and new, of the problems dealt with, some of them extending into cognate fields. The treatment is self-contained, and makes no special demand on the reader's knowledge beyond the elements of complex analysis in one variable, and of group theory.
Elliptic Functions and Elliptic Curves
Author: Patrick Du Val
Publisher: Cambridge University Press
ISBN: 0521200369
Category : Mathematics
Languages : en
Pages : 257
Book Description
A comprehensive treatment of elliptic functions is linked by these notes to a study of their application to elliptic curves. This approach provides geometers with the opportunity to acquaint themselves with aspects of their subject virtually ignored by other texts. The exposition is clear and logically carries themes from earlier through to later topics. This enthusiastic work of scholarship is made complete with the inclusion of some interesting historical details and a very comprehensive bibliography.
Publisher: Cambridge University Press
ISBN: 0521200369
Category : Mathematics
Languages : en
Pages : 257
Book Description
A comprehensive treatment of elliptic functions is linked by these notes to a study of their application to elliptic curves. This approach provides geometers with the opportunity to acquaint themselves with aspects of their subject virtually ignored by other texts. The exposition is clear and logically carries themes from earlier through to later topics. This enthusiastic work of scholarship is made complete with the inclusion of some interesting historical details and a very comprehensive bibliography.
The Finite Element Method for Elliptic Problems
Author: P.G. Ciarlet
Publisher: Elsevier
ISBN: 0080875254
Category : Mathematics
Languages : en
Pages : 551
Book Description
The objective of this book is to analyze within reasonable limits (it is not a treatise) the basic mathematical aspects of the finite element method. The book should also serve as an introduction to current research on this subject. On the one hand, it is also intended to be a working textbook for advanced courses in Numerical Analysis, as typically taught in graduate courses in American and French universities. For example, it is the author's experience that a one-semester course (on a three-hour per week basis) can be taught from Chapters 1, 2 and 3 (with the exception of Section 3.3), while another one-semester course can be taught from Chapters 4 and 6. On the other hand, it is hoped that this book will prove to be useful for researchers interested in advanced aspects of the numerical analysis of the finite element method. In this respect, Section 3.3, Chapters 5, 7 and 8, and the sections on "Additional Bibliography and Comments should provide many suggestions for conducting seminars.
Publisher: Elsevier
ISBN: 0080875254
Category : Mathematics
Languages : en
Pages : 551
Book Description
The objective of this book is to analyze within reasonable limits (it is not a treatise) the basic mathematical aspects of the finite element method. The book should also serve as an introduction to current research on this subject. On the one hand, it is also intended to be a working textbook for advanced courses in Numerical Analysis, as typically taught in graduate courses in American and French universities. For example, it is the author's experience that a one-semester course (on a three-hour per week basis) can be taught from Chapters 1, 2 and 3 (with the exception of Section 3.3), while another one-semester course can be taught from Chapters 4 and 6. On the other hand, it is hoped that this book will prove to be useful for researchers interested in advanced aspects of the numerical analysis of the finite element method. In this respect, Section 3.3, Chapters 5, 7 and 8, and the sections on "Additional Bibliography and Comments should provide many suggestions for conducting seminars.
Higher Regulators, Algebraic $K$-Theory, and Zeta Functions of Elliptic Curves
Author: Spencer J. Bloch
Publisher: American Mathematical Soc.
ISBN: 0821829734
Category : Mathematics
Languages : en
Pages : 114
Book Description
This is the long-awaited publication of the famous Irvine lectures. Delivered in 1978 at the University of California at Irvine, these lectures turned out to be an entry point to several intimately-connected new branches of arithmetic algebraic geometry, such as regulators and special values of L-functions of algebraic varieties, explicit formulas for them in terms of polylogarithms, the theory of algebraic cycles, and eventually the general theory of mixed motives which unifies and underlies all of the above (and much more).
Publisher: American Mathematical Soc.
ISBN: 0821829734
Category : Mathematics
Languages : en
Pages : 114
Book Description
This is the long-awaited publication of the famous Irvine lectures. Delivered in 1978 at the University of California at Irvine, these lectures turned out to be an entry point to several intimately-connected new branches of arithmetic algebraic geometry, such as regulators and special values of L-functions of algebraic varieties, explicit formulas for them in terms of polylogarithms, the theory of algebraic cycles, and eventually the general theory of mixed motives which unifies and underlies all of the above (and much more).
Elements of the Representation Theory of the Jacobi Group
Author: Rolf Berndt
Publisher: Springer Science & Business Media
ISBN: 303480282X
Category : Mathematics
Languages : en
Pages : 225
Book Description
Combining algebraic groups and number theory, this volume gathers material from the representation theory of this group for the first time, doing so for both local (Archimedean and non-Archimedean) cases as well as for the global number field case.
Publisher: Springer Science & Business Media
ISBN: 303480282X
Category : Mathematics
Languages : en
Pages : 225
Book Description
Combining algebraic groups and number theory, this volume gathers material from the representation theory of this group for the first time, doing so for both local (Archimedean and non-Archimedean) cases as well as for the global number field case.
The 1-2-3 of Modular Forms
Author: Jan Hendrik Bruinier
Publisher: Springer Science & Business Media
ISBN: 3540741194
Category : Mathematics
Languages : en
Pages : 273
Book Description
This book grew out of three series of lectures given at the summer school on "Modular Forms and their Applications" at the Sophus Lie Conference Center in Nordfjordeid in June 2004. The first series treats the classical one-variable theory of elliptic modular forms. The second series presents the theory of Hilbert modular forms in two variables and Hilbert modular surfaces. The third series gives an introduction to Siegel modular forms and discusses a conjecture by Harder. It also contains Harder's original manuscript with the conjecture. Each part treats a number of beautiful applications.
Publisher: Springer Science & Business Media
ISBN: 3540741194
Category : Mathematics
Languages : en
Pages : 273
Book Description
This book grew out of three series of lectures given at the summer school on "Modular Forms and their Applications" at the Sophus Lie Conference Center in Nordfjordeid in June 2004. The first series treats the classical one-variable theory of elliptic modular forms. The second series presents the theory of Hilbert modular forms in two variables and Hilbert modular surfaces. The third series gives an introduction to Siegel modular forms and discusses a conjecture by Harder. It also contains Harder's original manuscript with the conjecture. Each part treats a number of beautiful applications.
Lectures on the Theory of Elliptic Functions
Author: Harris Hancock
Publisher: Courier Corporation
ISBN: 9780486438252
Category : Mathematics
Languages : en
Pages : 538
Book Description
Prized for its extensive coverage of classical material, this text is also well regarded for its unusual fullness of treatment and its comprehensive discussion of both theory and applications. The author developes the theory of elliptic integrals, beginning with formulas establishing the existence, formation, and treatment of all three types, and concluding with the most general description of these integrals in terms of the Riemann surface. The theories of Legendre, Abel, Jacobi, and Weierstrass are developed individually and correlated with the universal laws of Riemann. The important contributory theorems of Hermite and Liouville are also fully developed. 1910 ed.
Publisher: Courier Corporation
ISBN: 9780486438252
Category : Mathematics
Languages : en
Pages : 538
Book Description
Prized for its extensive coverage of classical material, this text is also well regarded for its unusual fullness of treatment and its comprehensive discussion of both theory and applications. The author developes the theory of elliptic integrals, beginning with formulas establishing the existence, formation, and treatment of all three types, and concluding with the most general description of these integrals in terms of the Riemann surface. The theories of Legendre, Abel, Jacobi, and Weierstrass are developed individually and correlated with the universal laws of Riemann. The important contributory theorems of Hermite and Liouville are also fully developed. 1910 ed.
Jacobian Elliptic Functions
Author: Eric Harold 1889- Neville
Publisher: Hassell Street Press
ISBN: 9781014269331
Category :
Languages : en
Pages : 366
Book Description
This work has been selected by scholars as being culturally important and is part of the knowledge base of civilization as we know it. This work is in the public domain in the United States of America, and possibly other nations. Within the United States, you may freely copy and distribute this work, as no entity (individual or corporate) has a copyright on the body of the work. Scholars believe, and we concur, that this work is important enough to be preserved, reproduced, and made generally available to the public. To ensure a quality reading experience, this work has been proofread and republished using a format that seamlessly blends the original graphical elements with text in an easy-to-read typeface. We appreciate your support of the preservation process, and thank you for being an important part of keeping this knowledge alive and relevant.
Publisher: Hassell Street Press
ISBN: 9781014269331
Category :
Languages : en
Pages : 366
Book Description
This work has been selected by scholars as being culturally important and is part of the knowledge base of civilization as we know it. This work is in the public domain in the United States of America, and possibly other nations. Within the United States, you may freely copy and distribute this work, as no entity (individual or corporate) has a copyright on the body of the work. Scholars believe, and we concur, that this work is important enough to be preserved, reproduced, and made generally available to the public. To ensure a quality reading experience, this work has been proofread and republished using a format that seamlessly blends the original graphical elements with text in an easy-to-read typeface. We appreciate your support of the preservation process, and thank you for being an important part of keeping this knowledge alive and relevant.
Basic Number Theory.
Author: Andre Weil
Publisher: Springer Science & Business Media
ISBN: 3662059789
Category : Mathematics
Languages : en
Pages : 332
Book Description
Itpzf}JlOV, li~oxov uoq>ZUJlCJ. 7:WV Al(JX., llpoj1. AE(Jj1. The first part of this volume is based on a course taught at Princeton University in 1961-62; at that time, an excellent set ofnotes was prepared by David Cantor, and it was originally my intention to make these notes available to the mathematical public with only quite minor changes. Then, among some old papers of mine, I accidentally came across a long-forgotten manuscript by ChevaIley, of pre-war vintage (forgotten, that is to say, both by me and by its author) which, to my taste at least, seemed to have aged very welt It contained abrief but essentially com plete account of the main features of c1assfield theory, both local and global; and it soon became obvious that the usefulness of the intended volume would be greatly enhanced if I inc1uded such a treatment of this topic. It had to be expanded, in accordance with my own plans, but its outline could be preserved without much change. In fact, I have adhered to it rather c10sely at some critical points.
Publisher: Springer Science & Business Media
ISBN: 3662059789
Category : Mathematics
Languages : en
Pages : 332
Book Description
Itpzf}JlOV, li~oxov uoq>ZUJlCJ. 7:WV Al(JX., llpoj1. AE(Jj1. The first part of this volume is based on a course taught at Princeton University in 1961-62; at that time, an excellent set ofnotes was prepared by David Cantor, and it was originally my intention to make these notes available to the mathematical public with only quite minor changes. Then, among some old papers of mine, I accidentally came across a long-forgotten manuscript by ChevaIley, of pre-war vintage (forgotten, that is to say, both by me and by its author) which, to my taste at least, seemed to have aged very welt It contained abrief but essentially com plete account of the main features of c1assfield theory, both local and global; and it soon became obvious that the usefulness of the intended volume would be greatly enhanced if I inc1uded such a treatment of this topic. It had to be expanded, in accordance with my own plans, but its outline could be preserved without much change. In fact, I have adhered to it rather c10sely at some critical points.