Author: Evan Chen
Publisher: American Mathematical Soc.
ISBN: 1470466201
Category : Education
Languages : en
Pages : 311
Book Description
This is a challenging problem-solving book in Euclidean geometry, assuming nothing of the reader other than a good deal of courage. Topics covered included cyclic quadrilaterals, power of a point, homothety, triangle centers; along the way the reader will meet such classical gems as the nine-point circle, the Simson line, the symmedian and the mixtilinear incircle, as well as the theorems of Euler, Ceva, Menelaus, and Pascal. Another part is dedicated to the use of complex numbers and barycentric coordinates, granting the reader both a traditional and computational viewpoint of the material. The final part consists of some more advanced topics, such as inversion in the plane, the cross ratio and projective transformations, and the theory of the complete quadrilateral. The exposition is friendly and relaxed, and accompanied by over 300 beautifully drawn figures. The emphasis of this book is placed squarely on the problems. Each chapter contains carefully chosen worked examples, which explain not only the solutions to the problems but also describe in close detail how one would invent the solution to begin with. The text contains a selection of 300 practice problems of varying difficulty from contests around the world, with extensive hints and selected solutions. This book is especially suitable for students preparing for national or international mathematical olympiads or for teachers looking for a text for an honor class.
Euclidean Geometry in Mathematical Olympiads
Author: Evan Chen
Publisher: American Mathematical Soc.
ISBN: 1470466201
Category : Education
Languages : en
Pages : 311
Book Description
This is a challenging problem-solving book in Euclidean geometry, assuming nothing of the reader other than a good deal of courage. Topics covered included cyclic quadrilaterals, power of a point, homothety, triangle centers; along the way the reader will meet such classical gems as the nine-point circle, the Simson line, the symmedian and the mixtilinear incircle, as well as the theorems of Euler, Ceva, Menelaus, and Pascal. Another part is dedicated to the use of complex numbers and barycentric coordinates, granting the reader both a traditional and computational viewpoint of the material. The final part consists of some more advanced topics, such as inversion in the plane, the cross ratio and projective transformations, and the theory of the complete quadrilateral. The exposition is friendly and relaxed, and accompanied by over 300 beautifully drawn figures. The emphasis of this book is placed squarely on the problems. Each chapter contains carefully chosen worked examples, which explain not only the solutions to the problems but also describe in close detail how one would invent the solution to begin with. The text contains a selection of 300 practice problems of varying difficulty from contests around the world, with extensive hints and selected solutions. This book is especially suitable for students preparing for national or international mathematical olympiads or for teachers looking for a text for an honor class.
Publisher: American Mathematical Soc.
ISBN: 1470466201
Category : Education
Languages : en
Pages : 311
Book Description
This is a challenging problem-solving book in Euclidean geometry, assuming nothing of the reader other than a good deal of courage. Topics covered included cyclic quadrilaterals, power of a point, homothety, triangle centers; along the way the reader will meet such classical gems as the nine-point circle, the Simson line, the symmedian and the mixtilinear incircle, as well as the theorems of Euler, Ceva, Menelaus, and Pascal. Another part is dedicated to the use of complex numbers and barycentric coordinates, granting the reader both a traditional and computational viewpoint of the material. The final part consists of some more advanced topics, such as inversion in the plane, the cross ratio and projective transformations, and the theory of the complete quadrilateral. The exposition is friendly and relaxed, and accompanied by over 300 beautifully drawn figures. The emphasis of this book is placed squarely on the problems. Each chapter contains carefully chosen worked examples, which explain not only the solutions to the problems but also describe in close detail how one would invent the solution to begin with. The text contains a selection of 300 practice problems of varying difficulty from contests around the world, with extensive hints and selected solutions. This book is especially suitable for students preparing for national or international mathematical olympiads or for teachers looking for a text for an honor class.
Kiselev's Geometry
Author: Andreĭ Petrovich Kiselev
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 192
Book Description
This volume completes the English adaptation of a classical Russian textbook in elementary Euclidean geometry. The 1st volume subtitled "Book I. Planimetry" was published in 2006 (ISBN 0977985202). This 2nd volume (Book II. Stereometry) covers solid geometry, and contains a chapter on vectors, foundations, and introduction in non-Euclidean geometry added by the translator. The book intended for high-school and college students, and their teachers. Includes 317 exercises, index, and bibliography.
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 192
Book Description
This volume completes the English adaptation of a classical Russian textbook in elementary Euclidean geometry. The 1st volume subtitled "Book I. Planimetry" was published in 2006 (ISBN 0977985202). This 2nd volume (Book II. Stereometry) covers solid geometry, and contains a chapter on vectors, foundations, and introduction in non-Euclidean geometry added by the translator. The book intended for high-school and college students, and their teachers. Includes 317 exercises, index, and bibliography.
A History of Mathematics
Author: Florian Cajori
Publisher: Prabhat Prakashan
ISBN:
Category : Mathematics
Languages : en
Pages : 547
Book Description
A History of Mathematics by Florian Cajori: Delve into the captivating journey of mathematics, exploring its origins, significant discoveries, and influential figures throughout history. From ancient civilizations to modern times, this book presents a comprehensive account of the development of mathematical concepts and their profound impact on human civilization. Key Points: Traces the evolution of mathematical ideas, showcasing the contributions of renowned mathematicians. Highlights key mathematical concepts and theorems that have shaped various fields of science and technology. Explores the cultural, social, and philosophical aspects intertwined with the study of mathematics. Florian Cajori (1859-1930) was a noted Swiss American historian and educator who wrote the seminal work, A History of Mathematics. Cajori was a professor of mathematics at the University of Colorado and the University of California, Berkeley, and his work is still used as a reference today. Cajori was a prolific writer, publishing more than 30 books and 250 articles during his lifetime. He also wrote several textbooks and edited several other books on the history of mathematics. He was known as a passionate teacher and lectured widely on the history of mathematics. Cajori's work is considered to be the definitive source on the history of mathematics and he is fondly remembered for his dedication to the field.
Publisher: Prabhat Prakashan
ISBN:
Category : Mathematics
Languages : en
Pages : 547
Book Description
A History of Mathematics by Florian Cajori: Delve into the captivating journey of mathematics, exploring its origins, significant discoveries, and influential figures throughout history. From ancient civilizations to modern times, this book presents a comprehensive account of the development of mathematical concepts and their profound impact on human civilization. Key Points: Traces the evolution of mathematical ideas, showcasing the contributions of renowned mathematicians. Highlights key mathematical concepts and theorems that have shaped various fields of science and technology. Explores the cultural, social, and philosophical aspects intertwined with the study of mathematics. Florian Cajori (1859-1930) was a noted Swiss American historian and educator who wrote the seminal work, A History of Mathematics. Cajori was a professor of mathematics at the University of Colorado and the University of California, Berkeley, and his work is still used as a reference today. Cajori was a prolific writer, publishing more than 30 books and 250 articles during his lifetime. He also wrote several textbooks and edited several other books on the history of mathematics. He was known as a passionate teacher and lectured widely on the history of mathematics. Cajori's work is considered to be the definitive source on the history of mathematics and he is fondly remembered for his dedication to the field.
The Four Pillars of Geometry
Author: John Stillwell
Publisher: Springer Science & Business Media
ISBN: 0387255303
Category : Mathematics
Languages : en
Pages : 240
Book Description
This book is unique in that it looks at geometry from 4 different viewpoints - Euclid-style axioms, linear algebra, projective geometry, and groups and their invariants Approach makes the subject accessible to readers of all mathematical tastes, from the visual to the algebraic Abundantly supplemented with figures and exercises
Publisher: Springer Science & Business Media
ISBN: 0387255303
Category : Mathematics
Languages : en
Pages : 240
Book Description
This book is unique in that it looks at geometry from 4 different viewpoints - Euclid-style axioms, linear algebra, projective geometry, and groups and their invariants Approach makes the subject accessible to readers of all mathematical tastes, from the visual to the algebraic Abundantly supplemented with figures and exercises
Geometry: A Comprehensive Course
Author: Dan Pedoe
Publisher: Courier Corporation
ISBN: 0486131734
Category : Mathematics
Languages : en
Pages : 466
Book Description
Introduction to vector algebra in the plane; circles and coaxial systems; mappings of the Euclidean plane; similitudes, isometries, Moebius transformations, much more. Includes over 500 exercises.
Publisher: Courier Corporation
ISBN: 0486131734
Category : Mathematics
Languages : en
Pages : 466
Book Description
Introduction to vector algebra in the plane; circles and coaxial systems; mappings of the Euclidean plane; similitudes, isometries, Moebius transformations, much more. Includes over 500 exercises.
An Elementary Course in Synthetic Projective Geometry
Author: Derrick Norman Lehmer
Publisher:
ISBN:
Category : Geometry, Projective
Languages : en
Pages : 152
Book Description
Publisher:
ISBN:
Category : Geometry, Projective
Languages : en
Pages : 152
Book Description
The Publishers Weekly
A History of Mathematics
Author: Florian Cajori
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 472
Book Description
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 472
Book Description
Multiple View Geometry in Computer Vision
Author: Richard Hartley
Publisher: Cambridge University Press
ISBN: 1139449141
Category : Computers
Languages : en
Pages : 676
Book Description
A basic problem in computer vision is to understand the structure of a real world scene given several images of it. Techniques for solving this problem are taken from projective geometry and photogrammetry. Here, the authors cover the geometric principles and their algebraic representation in terms of camera projection matrices, the fundamental matrix and the trifocal tensor. The theory and methods of computation of these entities are discussed with real examples, as is their use in the reconstruction of scenes from multiple images. The new edition features an extended introduction covering the key ideas in the book (which itself has been updated with additional examples and appendices) and significant new results which have appeared since the first edition. Comprehensive background material is provided, so readers familiar with linear algebra and basic numerical methods can understand the projective geometry and estimation algorithms presented, and implement the algorithms directly from the book.
Publisher: Cambridge University Press
ISBN: 1139449141
Category : Computers
Languages : en
Pages : 676
Book Description
A basic problem in computer vision is to understand the structure of a real world scene given several images of it. Techniques for solving this problem are taken from projective geometry and photogrammetry. Here, the authors cover the geometric principles and their algebraic representation in terms of camera projection matrices, the fundamental matrix and the trifocal tensor. The theory and methods of computation of these entities are discussed with real examples, as is their use in the reconstruction of scenes from multiple images. The new edition features an extended introduction covering the key ideas in the book (which itself has been updated with additional examples and appendices) and significant new results which have appeared since the first edition. Comprehensive background material is provided, so readers familiar with linear algebra and basic numerical methods can understand the projective geometry and estimation algorithms presented, and implement the algorithms directly from the book.