Elementary Methods in Number Theory PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Elementary Methods in Number Theory PDF full book. Access full book title Elementary Methods in Number Theory by Melvyn B. Nathanson. Download full books in PDF and EPUB format.

Elementary Methods in Number Theory

Elementary Methods in Number Theory PDF Author: Melvyn B. Nathanson
Publisher: Springer Science & Business Media
ISBN: 0387227385
Category : Mathematics
Languages : en
Pages : 518

Book Description
This basic introduction to number theory is ideal for those with no previous knowledge of the subject. The main topics of divisibility, congruences, and the distribution of prime numbers are covered. Of particular interest is the inclusion of a proof for one of the most famous results in mathematics, the prime number theorem. With many examples and exercises, and only requiring knowledge of a little calculus and algebra, this book will suit individuals with imagination and interest in following a mathematical argument to its conclusion.

Elementary Methods in Number Theory

Elementary Methods in Number Theory PDF Author: Melvyn B. Nathanson
Publisher: Springer Science & Business Media
ISBN: 0387227385
Category : Mathematics
Languages : en
Pages : 518

Book Description
This basic introduction to number theory is ideal for those with no previous knowledge of the subject. The main topics of divisibility, congruences, and the distribution of prime numbers are covered. Of particular interest is the inclusion of a proof for one of the most famous results in mathematics, the prime number theorem. With many examples and exercises, and only requiring knowledge of a little calculus and algebra, this book will suit individuals with imagination and interest in following a mathematical argument to its conclusion.

Elementary Methods in Number Theory

Elementary Methods in Number Theory PDF Author: Melvyn B. Nathanson
Publisher: Springer Science & Business Media
ISBN: 0387989129
Category : Mathematics
Languages : en
Pages : 518

Book Description
This basic introduction to number theory is ideal for those with no previous knowledge of the subject. The main topics of divisibility, congruences, and the distribution of prime numbers are covered. Of particular interest is the inclusion of a proof for one of the most famous results in mathematics, the prime number theorem. With many examples and exercises, and only requiring knowledge of a little calculus and algebra, this book will suit individuals with imagination and interest in following a mathematical argument to its conclusion.

Not Always Buried Deep

Not Always Buried Deep PDF Author: Paul Pollack
Publisher: American Mathematical Soc.
ISBN: 0821848801
Category : Mathematics
Languages : en
Pages : 322

Book Description
Number theory is one of the few areas of mathematics where problems of substantial interest can be fully described to someone with minimal mathematical background. Solving such problems sometimes requires difficult and deep methods. But this is not a universal phenomenon; many engaging problems can be successfully attacked with little more than one's mathematical bare hands. In this case one says that the problem can be solved in an elementary way. Such elementary methods and the problems to which they apply are the subject of this book. Not Always Buried Deep is designed to be read and enjoyed by those who wish to explore elementary methods in modern number theory. The heart of the book is a thorough introduction to elementary prime number theory, including Dirichlet's theorem on primes in arithmetic progressions, the Brun sieve, and the Erdos-Selberg proof of the prime number theorem. Rather than trying to present a comprehensive treatise, Pollack focuses on topics that are particularly attractive and accessible. Other topics covered include Gauss's theory of cyclotomy and its applications to rational reciprocity laws, Hilbert's solution to Waring's problem, and modern work on perfect numbers. The nature of the material means that little is required in terms of prerequisites: The reader is expected to have prior familiarity with number theory at the level of an undergraduate course and a first course in modern algebra (covering groups, rings, and fields). The exposition is complemented by over 200 exercises and 400 references.

Number Theory for Elementary School Teachers

Number Theory for Elementary School Teachers PDF Author: Edward Wall
Publisher: McGraw-Hill Humanities/Social Sciences/Languages
ISBN: 9780073378473
Category : Education
Languages : en
Pages : 0

Book Description
In response to concerns about teacher retention, especially among teachers in their first to fourth year in the classroom, we offer future teachers a series of brief guides full of practical advice that they can refer to in both their student teaching and in their first years on the job. Number Theory for Elementary School Teachers is designed for preservice candidates in early and/or elementary education. The text complements traditional Math Methods courses and provides deep content knowledge for prospective and first year teachers.

Number Theory in the Spirit of Liouville

Number Theory in the Spirit of Liouville PDF Author: Kenneth S. Williams
Publisher: Cambridge University Press
ISBN: 1107002532
Category : Mathematics
Languages : en
Pages : 307

Book Description
A gentle introduction to Liouville's powerful method in elementary number theory. Suitable for advanced undergraduate and beginning graduate students.

Elementary Introduction to Number Theory

Elementary Introduction to Number Theory PDF Author: Calvin T. Long
Publisher: D.C. Heath
ISBN:
Category : Mathematics
Languages : en
Pages : 264

Book Description


Elementary Number Theory: Primes, Congruences, and Secrets

Elementary Number Theory: Primes, Congruences, and Secrets PDF Author: William Stein
Publisher: Springer Science & Business Media
ISBN: 0387855254
Category : Mathematics
Languages : en
Pages : 173

Book Description
This is a book about prime numbers, congruences, secret messages, and elliptic curves that you can read cover to cover. It grew out of undergr- uate courses that the author taught at Harvard, UC San Diego, and the University of Washington. The systematic study of number theory was initiated around 300B. C. when Euclid proved that there are in?nitely many prime numbers, and also cleverly deduced the fundamental theorem of arithmetic, which asserts that every positive integer factors uniquely as a product of primes. Over a thousand years later (around 972A. D. ) Arab mathematicians formulated the congruent number problem that asks for a way to decide whether or not a given positive integer n is the area of a right triangle, all three of whose sides are rational numbers. Then another thousand years later (in 1976), Di?e and Hellman introduced the ?rst ever public-key cryptosystem, which enabled two people to communicate secretely over a public communications channel with no predetermined secret; this invention and the ones that followed it revolutionized the world of digital communication. In the 1980s and 1990s, elliptic curves revolutionized number theory, providing striking new insights into the congruent number problem, primality testing, publ- key cryptography, attacks on public-key systems, and playing a central role in Andrew Wiles’ resolution of Fermat’s Last Theorem.

Discrete Mathematics and Its Applications

Discrete Mathematics and Its Applications PDF Author: Kenneth H. Rosen
Publisher:
ISBN: 9780071244749
Category : Computer science
Languages : en
Pages : 109

Book Description
The companion Web site -- To the student -- The foundations : logic, sets, and functions -- The fundamentals : algorithms, the integers, and matrices -- Mathematical reasoning -- Counting -- Advanced counting techniques -- Relations -- Graphs -- Trees -- Boolean algebra -- Modeling computation

Methods of Solving Number Theory Problems

Methods of Solving Number Theory Problems PDF Author: Ellina Grigorieva
Publisher: Birkhäuser
ISBN: 3319909150
Category : Mathematics
Languages : en
Pages : 405

Book Description
Through its engaging and unusual problems, this book demonstrates methods of reasoning necessary for learning number theory. Every technique is followed by problems (as well as detailed hints and solutions) that apply theorems immediately, so readers can solve a variety of abstract problems in a systematic, creative manner. New solutions often require the ingenious use of earlier mathematical concepts - not the memorization of formulas and facts. Questions also often permit experimental numeric validation or visual interpretation to encourage the combined use of deductive and intuitive thinking. The first chapter starts with simple topics like even and odd numbers, divisibility, and prime numbers and helps the reader to solve quite complex, Olympiad-type problems right away. It also covers properties of the perfect, amicable, and figurate numbers and introduces congruence. The next chapter begins with the Euclidean algorithm, explores the representations of integer numbers in different bases, and examines continued fractions, quadratic irrationalities, and the Lagrange Theorem. The last section of Chapter Two is an exploration of different methods of proofs. The third chapter is dedicated to solving Diophantine linear and nonlinear equations and includes different methods of solving Fermat’s (Pell’s) equations. It also covers Fermat’s factorization techniques and methods of solving challenging problems involving exponent and factorials. Chapter Four reviews the Pythagorean triple and quadruple and emphasizes their connection with geometry, trigonometry, algebraic geometry, and stereographic projection. A special case of Waring’s problem as a representation of a number by the sum of the squares or cubes of other numbers is covered, as well as quadratic residuals, Legendre and Jacobi symbols, and interesting word problems related to the properties of numbers. Appendices provide a historic overview of number theory and its main developments from the ancient cultures in Greece, Babylon, and Egypt to the modern day. Drawing from cases collected by an accomplished female mathematician, Methods in Solving Number Theory Problems is designed as a self-study guide or supplementary textbook for a one-semester course in introductory number theory. It can also be used to prepare for mathematical Olympiads. Elementary algebra, arithmetic and some calculus knowledge are the only prerequisites. Number theory gives precise proofs and theorems of an irreproachable rigor and sharpens analytical thinking, which makes this book perfect for anyone looking to build their mathematical confidence.

Elementary Number Theory

Elementary Number Theory PDF Author: Edmund Landau
Publisher: American Mathematical Society
ISBN: 1470463253
Category : Mathematics
Languages : en
Pages : 256

Book Description
This three-volume classic work is reprinted here as a single volume.