Intercalated Layered Materials PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Intercalated Layered Materials PDF full book. Access full book title Intercalated Layered Materials by F.A. Lévy. Download full books in PDF and EPUB format.

Intercalated Layered Materials

Intercalated Layered Materials PDF Author: F.A. Lévy
Publisher: Springer Science & Business Media
ISBN: 940099415X
Category : Science
Languages : en
Pages : 580

Book Description
Materials with layered structures remain an extensively investigated subject in current physics and chemistry. Most of the promising technological applications however deal with intercalation compounds of layered materials. Graphite intercalation compounds have now been known for a long time. Intercalation in transition metal dichalcogenides, on the other hand, has been investigated only recently. The amount of information on intercalated layered materials has increased far beyond the original concept for this volume in the series Physics and Chemistry of Materials with Layered Structures. The large size of this volume also indicates how important this field of research will be, not only in basic science, but also in industrial and energy applications. In this volume, two classes of materials are included, generally investigated by different scientists. Graphite intercalates and intercalates of other inorganic com pounds actually constitute separate classes of materials. However, the similarity between the intercalation techniques and some intercalation processes does not justify this separation, and accounts for the inclusion of both classes in this volume. The first part of the volume deals with intercalation processes and intercalates of transition metal dichalcogenides. Several chapters include connected topics necessary to give a good introduction or comprehensive review of these types of materials. Organic as well as inorganic intercalation compounds are treated. The second part includes contributions concerning graphite intercalates. It should be noted that graphite intercalation compounds have already been mentioned in Volumes I and V.

Intercalated Layered Materials

Intercalated Layered Materials PDF Author: F.A. Lévy
Publisher: Springer Science & Business Media
ISBN: 940099415X
Category : Science
Languages : en
Pages : 580

Book Description
Materials with layered structures remain an extensively investigated subject in current physics and chemistry. Most of the promising technological applications however deal with intercalation compounds of layered materials. Graphite intercalation compounds have now been known for a long time. Intercalation in transition metal dichalcogenides, on the other hand, has been investigated only recently. The amount of information on intercalated layered materials has increased far beyond the original concept for this volume in the series Physics and Chemistry of Materials with Layered Structures. The large size of this volume also indicates how important this field of research will be, not only in basic science, but also in industrial and energy applications. In this volume, two classes of materials are included, generally investigated by different scientists. Graphite intercalates and intercalates of other inorganic com pounds actually constitute separate classes of materials. However, the similarity between the intercalation techniques and some intercalation processes does not justify this separation, and accounts for the inclusion of both classes in this volume. The first part of the volume deals with intercalation processes and intercalates of transition metal dichalcogenides. Several chapters include connected topics necessary to give a good introduction or comprehensive review of these types of materials. Organic as well as inorganic intercalation compounds are treated. The second part includes contributions concerning graphite intercalates. It should be noted that graphite intercalation compounds have already been mentioned in Volumes I and V.

Two-Dimensional Transition-Metal Dichalcogenides

Two-Dimensional Transition-Metal Dichalcogenides PDF Author: Alexander V. Kolobov
Publisher: Springer
ISBN: 3319314505
Category : Technology & Engineering
Languages : en
Pages : 545

Book Description
This book summarizes the current status of theoretical and experimental progress in 2 dimensional graphene-like monolayers and few-layers of transition metal dichalcogenides (TMDCs). Semiconducting monolayer TMDCs, due to the presence of a direct gap, significantly extend the potential of low-dimensional nanomaterials for applications in nanoelectronics and nano-optoelectronics as well as flexible nano-electronics with unprecedented possibilities to control the gap by external stimuli. Strong quantum confinement results in extremely high exciton binding energies which forms an interesting platform for both fundamental studies and device applications. Breaking of spatial inversion symmetry in monolayers results in strong spin-valley coupling potentially leading to their use in valleytronics. Starting with the basic chemistry of transition metals, the reader is introduced to the rich field of transition metal dichalcogenides. After a chapter on three dimensional crystals and a description of top-down and bottom-up fabrication methods of few-layer and single layer structures, the fascinating world of two-dimensional TMDCs structures is presented with their unique atomic, electronic, and magnetic properties. The book covers in detail particular features associated with decreased dimensionality such as stability and phase-transitions in monolayers, the appearance of a direct gap, large binding energy of 2D excitons and trions and their dynamics, Raman scattering associated with decreased dimensionality, extraordinarily strong light-matter interaction, layer-dependent photoluminescence properties, new physics associated with the destruction of the spatial inversion symmetry of the bulk phase, spin-orbit and spin-valley couplings. The book concludes with chapters on engineered heterostructures and device applications such as a monolayer MoS2 transistor. Considering the explosive interest in physics and applications of two-dimensional materials, this book is a valuable source of information for material scientists and engineers working in the field as well as for the graduate students majoring in materials science.

Quantum Confined Excitons in 2-Dimensional Materials

Quantum Confined Excitons in 2-Dimensional Materials PDF Author: Carmen Palacios-Berraquero
Publisher: Springer
ISBN: 3030014827
Category : Computers
Languages : en
Pages : 125

Book Description
This book presents the first established experimental results of an emergent field: 2-dimensional materials as platforms for quantum technologies, specifically through the optics of quantum-confined excitons. It also provides an extensive review of the literature from a number of disciplines that informed the research, and introduces the materials of focus – 2d Transition Metal Dichalcogenides (2d-TMDs) – in detail, discussing electronic and chemical structure, excitonic behaviour and response to strain. This is followed by a brief overview of quantum information technologies, including concepts such as single-photon sources and quantum networks. The methods chapter addresses quantum optics techniques and 2d-material processing, while the results section shows the development of a method to deterministically create quantum dots (QDs) in the 2d-TMDs, which can trap single-excitons; the fabrication of atomically thin quantum light-emitting diodes to induce all-electrical single-photon emission from the QDs, and lastly, the use of devices to controllably trap single-spins in the QDs –the first step towards their use as optically-addressable matter qubits.

2D Metal Carbides and Nitrides (MXenes)

2D Metal Carbides and Nitrides (MXenes) PDF Author: Babak Anasori
Publisher: Springer Nature
ISBN: 3030190269
Category : Technology & Engineering
Languages : en
Pages : 530

Book Description
This book describes the rapidly expanding field of two-dimensional (2D) transition metal carbides and nitrides (MXenes). It covers fundamental knowledge on synthesis, structure, and properties of these new materials, and a description of their processing, scale-up and emerging applications. The ways in which the quickly expanding family of MXenes can outperform other novel nanomaterials in a variety of applications, spanning from energy storage and conversion to electronics; from water science to transportation; and in defense and medical applications, are discussed in detail.

Crystallography and Crystal Chemistry of Materials with Layered Structures

Crystallography and Crystal Chemistry of Materials with Layered Structures PDF Author: F.A. Lévy
Publisher: Springer Science & Business Media
ISBN: 9401014337
Category : Science
Languages : en
Pages : 374

Book Description
In the last ten years, the chemistry and physics of materials with layered structures became an intensively investigated field in the study of the solid state. Research into physical properties of these crystals and especially investigations of their physical anisotropy related to the structural anisotropy has led to remarkable and perplexing results. Most of the layered materials exist in several polytypic modifications and can include stacking faults. The crystal structures are therefore complex and it became apparent that there was a great need for a review of the crystallographic data of materials approximating two-dimensional solids. This second volume in the series 'Physics and Chemistry of Materials with Layered Structures' has been written by specialists of different classes of layered materials. Structural data are reviewed and the most important relations between the structure and the chemical and physical properties are emphasized. The first three contributions are devoted to the transition metal dichalcogenides whose physical properties have been investigated in detail. The crystallographic data and crystal growth conditions are presented in the first paper. The second paper constitutes an incisive review of the phase transformations and charge density waves which have been observed in the metallic dichalcogenides. In two contributions the layered structures of newer ternary compounds are de scribed and the connection between structure and non-stoichiometry is discussed.

MoS2

MoS2 PDF Author: Zhiming M. Wang
Publisher: Springer Science & Business Media
ISBN: 3319028502
Category : Technology & Engineering
Languages : en
Pages : 296

Book Description
This book reviews the structure and electronic, magnetic, and other properties of various MoS2 (Molybdenum disulfide) nanostructures, with coverage of synthesis, Valley polarization, spin physics, and other topics. MoS2 is an important, graphene-like layered nano-material that substantially extends the range of possible nanostructures and devices for nanofabrication. These materials have been widely researched in recent years, and have become an attractive topic for applications such as catalytic materials and devices based on field-effect transistors (FETs) and semiconductors. Chapters from leading scientists worldwide create a bridge between MoS2 nanomaterials and fundamental physics in order to stimulate readers' interest in the potential of these novel materials for device applications. Since MoS2 nanostructures are expected to be increasingly important for future developments in energy and other electronic device applications, this book can be recommended for Physics and Materials Science and Engineering departments and as reference for researchers in the field.

Density Waves In Solids

Density Waves In Solids PDF Author: George Gruner
Publisher: CRC Press
ISBN: 0429969562
Category : Science
Languages : en
Pages : 288

Book Description
?Density Waves in Solids is written for graduate students and scientists interested in solid-state sciences. It discusses the theoretical and experimental state of affairs of two novel types of broken symmetry ground states of metals, charge, and spin density waves. These states arise as the consequence of electron-phonon and electron-electron interactions in low-dimensional metals.Some fundamental aspects of the one-dimensional electron gas, and of the materials with anisotropic properties, are discussed first. This is followed by the mean field theory of the phases transitions?discussed using second quantized formalism?together with the various experimental observations on the transition and on the ground states. Fluctuation effects and the collective excitations are reviewed next, using the Ginzburg-Landau formalism, followed by the review of the interaction of these states with the underlying lattice and with impurities. The final chapters are devoted to the response of the ground states to external perturbations.

Chemical Vapor Transport Reactions

Chemical Vapor Transport Reactions PDF Author: Michael Binnewies
Publisher: Walter de Gruyter
ISBN: 3110254654
Category : Science
Languages : en
Pages : 644

Book Description
This comprehensive handbook covers the diverse aspects of chemical vapor transport reactions from basic research to important practical applications. The book begins with an overview of models for chemical vapor transport reactions and then proceeds to treat the specific chemical transport reactions for the elements, halides, oxides, sulfides, selenides, tellurides, pnictides, among others. Aspects of transport from intermetallic phases, the stability of gas particles, thermodynamic data, modeling software and laboratory techniques are also covered. Selected experiments using chemical vapor transport reactions round out the work, making this book a useful reference for researchers and instructors in solid state and inorganic chemistry.

2D Materials

2D Materials PDF Author: Phaedon Avouris
Publisher: Cambridge University Press
ISBN: 1316738132
Category : Technology & Engineering
Languages : en
Pages : 521

Book Description
Learn about the most recent advances in 2D materials with this comprehensive and accessible text. Providing all the necessary materials science and physics background, leading experts discuss the fundamental properties of a wide range of 2D materials, and their potential applications in electronic, optoelectronic and photonic devices. Several important classes of materials are covered, from more established ones such as graphene, hexagonal boron nitride, and transition metal dichalcogenides, to new and emerging materials such as black phosphorus, silicene, and germanene. Readers will gain an in-depth understanding of the electronic structure and optical, thermal, mechanical, vibrational, spin and plasmonic properties of each material, as well as the different techniques that can be used for their synthesis. Presenting a unified perspective on 2D materials, this is an excellent resource for graduate students, researchers and practitioners working in nanotechnology, nanoelectronics, nanophotonics, condensed matter physics, and chemistry.

Chemical Physics of Intercalation

Chemical Physics of Intercalation PDF Author: A.P. Legrand
Publisher: Springer Science & Business Media
ISBN: 1475796498
Category : Science
Languages : en
Pages : 503

Book Description
Conjugated polymers suoh as polyaoetylene (CH)x polyphenylene (C6H4)x' poly thiophene (C4H2S)x' etc., which are insulators in their pristine state, can be brought to the metallic state after "doping" with ohemioal speoies whioh oan be either eleotron donors or I aoceptors. . This doping prooess involves a oharge transfer between the dopant moleoule and the polymer ohain whioh are then supposed to be spatially olose to each other. It follows that the meohanism of doping must be oonsidered as an aotual interoalation process, which will greatly affeot the struotural oharacteristios of the starting material, as well as its morphology, as has been observed during the 2 intercalation of graphite and layered compounds . In parallel with these modifioations, the band struoture of the system changes yielding a new set of eleotronio properties. It is evident therefore that the struotural and eleotronio properties are intimately related, and must be studied simultaneously in the same system to give reliable information. A great number of studies have been devoted to the structural and electronic properties of conjugated polymers after a chemical or 2 electrochemical doping process . Most of these concern the properties of the system for a given dopant concentration. With this approach a universal pioture of the polymer/dopant system is very diffioult to obtain, as a comparison between different experiments is very hazardous. On the other hand, only a small number of measurements have been performed during the continuous electroohemioal doping of various polymers.