Electronic Structure of Semiconductor Interfaces PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Electronic Structure of Semiconductor Interfaces PDF full book. Access full book title Electronic Structure of Semiconductor Interfaces by Winfried Mönch. Download full books in PDF and EPUB format.

Electronic Structure of Semiconductor Interfaces

Electronic Structure of Semiconductor Interfaces PDF Author: Winfried Mönch
Publisher: Springer Nature
ISBN: 3031590643
Category : Condensed matter
Languages : en
Pages : 156

Book Description
This concise volume examines the characteristic electronic parameters of semiconductor interfaces, namely the barrier heights of metal-semiconductor or Schottky contacts and the valence-band discontinuities of semiconductor-semiconductor interfaces or heterostructures. Both are determined by the same concept, namely the wave-function tails of electron states overlapping a semiconductor band gap directly at the interface. These interface-induced gap states (IFIGS) result from the complex band structure of the corresponding semiconductor. The IFIGS are characterized by two parameters, namely by their branch point, at which their charge character changes from predominantly valence-band- to conduction-band-like, and secondly by the proportionality factor or slope parameter of the corresponding electric-dipole term, which varies in proportion to the difference in the electronegativities of the two solids forming the interface. This IFIGS-and-electronegativity concept consistently and quantitatively explains the experimentally observed barrier heights of Schottky contacts as well as the valence-band offsets of heterostructures. Insulators are treated as wide band-gap semiconductors. In addition, this book: Explains intrinsic interface states of electron states that overlap the band gap of a semiconductor at the interface Includes experimental data on Schottky contacts including carrier height, ideality factor and flat-band barrier height Compares of Theoretical and Experimental Data for a range of semiconductors.

Electronic Structure of Semiconductor Interfaces

Electronic Structure of Semiconductor Interfaces PDF Author: Winfried Mönch
Publisher: Springer Nature
ISBN: 3031590643
Category : Condensed matter
Languages : en
Pages : 156

Book Description
This concise volume examines the characteristic electronic parameters of semiconductor interfaces, namely the barrier heights of metal-semiconductor or Schottky contacts and the valence-band discontinuities of semiconductor-semiconductor interfaces or heterostructures. Both are determined by the same concept, namely the wave-function tails of electron states overlapping a semiconductor band gap directly at the interface. These interface-induced gap states (IFIGS) result from the complex band structure of the corresponding semiconductor. The IFIGS are characterized by two parameters, namely by their branch point, at which their charge character changes from predominantly valence-band- to conduction-band-like, and secondly by the proportionality factor or slope parameter of the corresponding electric-dipole term, which varies in proportion to the difference in the electronegativities of the two solids forming the interface. This IFIGS-and-electronegativity concept consistently and quantitatively explains the experimentally observed barrier heights of Schottky contacts as well as the valence-band offsets of heterostructures. Insulators are treated as wide band-gap semiconductors. In addition, this book: Explains intrinsic interface states of electron states that overlap the band gap of a semiconductor at the interface Includes experimental data on Schottky contacts including carrier height, ideality factor and flat-band barrier height Compares of Theoretical and Experimental Data for a range of semiconductors.

Semiconductor Surfaces and Interfaces

Semiconductor Surfaces and Interfaces PDF Author: Friedhelm Bechstedt
Publisher:
ISBN:
Category : Semiconductors
Languages : en
Pages : 484

Book Description


Electronic Properties of Semiconductor Interfaces

Electronic Properties of Semiconductor Interfaces PDF Author: Winfried Mönch
Publisher: Springer Science & Business Media
ISBN: 3662069458
Category : Technology & Engineering
Languages : en
Pages : 269

Book Description
Using the continuum of interface-induced gap states (IFIGS) as a unifying theme, Mönch explains the band-structure lineup at all types of semiconductor interfaces. These intrinsic IFIGS are the wave-function tails of electron states, which overlap a semiconductor band-gap exactly at the interface, so they originate from the quantum-mechanical tunnel effect. He shows that a more chemical view relates the IFIGS to the partial ionic character of the covalent interface-bonds and that the charge transfer across the interface may be modeled by generalizing Pauling?s electronegativity concept. The IFIGS-and-electronegativity theory is used to quantitatively explain the barrier heights and band offsets of well-characterized Schottky contacts and semiconductor heterostructures, respectively.

Electronic Structure of Semiconductor Heterojunctions

Electronic Structure of Semiconductor Heterojunctions PDF Author: Giorgio Margaritondo
Publisher: Springer Science & Business Media
ISBN: 9400930739
Category : Science
Languages : en
Pages : 348

Book Description
E se non che di cid son vere prove A nd were it not for the true evidence Per piti e piti autori, che sa, ra. nno Of many authors who will be Per i miei versi nominati altrove, Mentioned elsewhere in my rhyme Non presterei alla penna 10. mana I would not lend my hand to the pen Per nota1' cid ch'io vidi, can temenza And describe my observations, for fear ehe non fosse do. altri casso e van 0; That they would be rejected and in vane; Mala lor chiara. e vera. esperienza But these authors' clear and true experience Mi assicura. nel dir, come persone Encourages me to report, since they Degne di fede ad ogni gra. n sentenza. Should always be trusted for their word. [From" Dittamondo", by Fazio degli UbertiJ Heterojunction interfaces, the interfaces between different semiconducting materi als, have been extensively explored for over a quarter of a century. The justifica tion for this effort is clear - these interfaces could become the building blocks of lllany novel solid-state devices. Other interfaces involving semiconductors are al ready widely used in technology, These are, for example, metal-semiconductor and insulator-semiconductor junctions and hOll1ojunctions. In comparison, the present applications of heterojunction int. erfaces are limited, but they could potentially becOlne lnuch lllore ext. ensive in the neal' future. The path towards the widespread use of heterojunctions is obstructed by several obstacles

Electronic Structure of Metal-Semiconductor Contacts

Electronic Structure of Metal-Semiconductor Contacts PDF Author: Winfried Mönch
Publisher: Springer Science & Business Media
ISBN: 9400906579
Category : Science
Languages : en
Pages : 302

Book Description
Interface and surface science have been important in the development of semicon ductor physics right from the beginning on. Modern device concepts are not only based on p-n junctions, which are interfaces between regions containing different types of dopants, but take advantage of the electronic properties of semiconductor insulator interfaces, heterojunctions between distinct semiconductors, and metal semiconductor contacts. The latter ones stood almost at the very beginning of semi conductor physics at the end of the last century. The rectifying properties of metal-semiconductor contacts were first described by Braun in 1874. A physically correct explanation of unilateral conduction, as this deviation from Ohm's law was called, could not be given at that time. A prerequisite was Wilson's quantum theory of electronic semi-conductors which he published in 1931. A few years later, in 1938, Schottky finally explained the rectification at metal-semiconductor contacts by a space-

Electronic Structure of Semiconductor Interfaces

Electronic Structure of Semiconductor Interfaces PDF Author: F. Herman
Publisher:
ISBN:
Category :
Languages : en
Pages : 63

Book Description
This report concerns theoretical studies of the electronic structure of various types of interfaces, including (a) interfaces between different semiconductors, such as Ge and GaAs; (b) interfaces between semiconductors and insulators, such as Si and Si02 (c) interfaces between metals and semiconductors, such as Pd2Si and Si; (d) interfaces between crystalline and amorphous semiconductors; and (e) interfaces between ferromagnetic and antiferromagnetic metals, such as Permalloy/MnFe and Co/Cr. The overall goal was to elucidate the inter-relationship between the atomic-scale structure of interfaces and their electronic, optical, and magnetic characteristics. For some of these systems, the effects of structural an chemical imperfectious on interfacial properties were taken into account explicitly. Theoretical results were related to relevant experimental information where possible. This Final general approach, the principal conclusions, and where the subject stands today. Additional information may be found in the six representative research papers and reviews that are reproduced in the Appendices.

Electronic Structure of Disordered Alloys, Surfaces and Interfaces

Electronic Structure of Disordered Alloys, Surfaces and Interfaces PDF Author: Ilja Turek
Publisher: Springer Science & Business Media
ISBN: 1461562554
Category : Science
Languages : en
Pages : 327

Book Description
At present, there is an increasing interest in the prediction of properties of classical and new materials such as substitutional alloys, their surfaces, and metallic or semiconductor multilayers. A detailed understanding based on a thus of the utmost importance for fu microscopic, parameter-free approach is ture developments in solid state physics and materials science. The interrela tion between electronic and structural properties at surfaces plays a key role for a microscopic understanding of phenomena as diverse as catalysis, corrosion, chemisorption and crystal growth. Remarkable progress has been made in the past 10-15 years in the understand ing of behavior of ideal crystals and their surfaces by relating their properties to the underlying electronic structure as determined from the first principles. Similar studies of complex systems like imperfect surfaces, interfaces, and mul tilayered structures seem to be accessible by now. Conventional band-structure methods, however, are of limited use because they require an excessive number of atoms per elementary cell, and are not able to account fully for e.g. substitu tional disorder and the true semiinfinite geometry of surfaces. Such problems can be solved more appropriately by Green function techniques and multiple scattering formalism.

Semiconductor Interfaces: Formation and Properties

Semiconductor Interfaces: Formation and Properties PDF Author: Guy LeLay
Publisher: Springer Science & Business Media
ISBN: 3642729673
Category : Science
Languages : en
Pages : 399

Book Description
The trend towards miniaturisation of microelectronic devices and the search for exotic new optoelectronic devices based on multilayers confer a crucial role on semiconductor interfaces. Great advances have recently been achieved in the elaboration of new thin film materials and in the characterization of their interfacial properties, down to the atomic scale, thanks to the development of sophisticated new techniques. This book is a collection of lectures that were given at the International Winter School on Semiconductor Interfaces: Formation and Properties held at the Centre de Physique des Rouches from 24 February to 6 March, 1987. The aim of this Winter School was to present a comprehensive review of this field, in particular of the materials and methods, and to formulate recom mendations for future research. The following topics are treated: (i) Interface formation. The key aspects of molecular beam epitaxy are emphasized, as well as the fabrication of artificially layered structures, strained layer superlattices and the tailoring of abrupt doping profiles. (ii) Fine characterization down to the atomic scale using recently devel oped, powerful techniques such as scanning tunneling microscopy, high reso lution transmission electron microscopy, glancing incidence x-ray diffraction, x-ray standing waves, surface extended x-ray absorption fine structure and surface extended energy-loss fine structure. (iii) Specific physical properties of the interfaces and their prospective applications in devices. We wish to thank warmly all the lecturers and participants, as well as the organizing committee, who made this Winter School a success.

Electronic Structure of Metal-semiconductor Interfaces

Electronic Structure of Metal-semiconductor Interfaces PDF Author: Jason Charlesworth
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description


Surfaces and Interfaces: Physics and Electronics

Surfaces and Interfaces: Physics and Electronics PDF Author: R.S. Bauer
Publisher: Elsevier
ISBN: 0444600167
Category : Science
Languages : en
Pages : 663

Book Description
Surfaces and Interfaces: Physics and Electronics covers the proceedings of the second Trieste ICTP-IUPAP Semiconductor Symposium, conducted at the International Center for Theoretical Physics in Trieste, Italy on August 30 to September 3, 1982. The book focuses on the processes, methodologies, reactions, and approaches involved in semiconductor physics. The selection first elaborates on the electronic properties and surface geometry of GaAs and ZnO surfaces; electronic structure of Si (III) surfaces; and photoemission studies of surface states on Si (III) 2X1. Discussions focus on consistency of different experiments, relating experiments to a theoretical model, quenching of surface states by hydrogen, inverse photoemission results, and basic data and models of the low-index ZnO surfaces. The text then examines Si (III) 2X1 studies by angle resolved photoemission; electronic surface states at steps in Si (III) 2X1; and a novel method for the study of optical properties of surfaces. The manuscript takes a look at spot profile analysis (LEED) of defects at silicon surfaces; chemisorption-induced defects at interfaces on compound semiconductors; and surface defects on semiconductors. The microscopic properties and behavior of silicide interfaces, recombination at semiconductor surfaces and interfaces, and dipoles, defects, and interfaces are also discussed. The selection is a highly recommended source of data for physicists and readers wanting to study semiconductor physics.